These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 36773171)
1. Comparative effectiveness of virtual reality (VR) vs 3D printed models of congenital heart disease in resident and nurse practitioner educational experience. Awori J; Friedman SD; Howard C; Kronmal R; Buddhe S 3D Print Med; 2023 Feb; 9(1):2. PubMed ID: 36773171 [TBL] [Abstract][Full Text] [Related]
2. Effectiveness of three-dimensional printed and virtual reality models in learning the morphology of craniovertebral junction deformities: a multicentre, randomised controlled study. Cai S; He Y; Cui H; Zhou X; Zhou D; Wang F; Tian Y BMJ Open; 2020 Sep; 10(9):e036853. PubMed ID: 32973056 [TBL] [Abstract][Full Text] [Related]
3. Virtual Reality Angiogram vs 3-Dimensional Printed Angiogram as an Educational tool-A Comparative Study. Bairamian D; Liu S; Eftekhar B Neurosurgery; 2019 Aug; 85(2):E343-E349. PubMed ID: 30715444 [TBL] [Abstract][Full Text] [Related]
4. Virtual Reality and Three-Dimensional Printed Models Improve the Morphological Understanding in Learning Mandibular Sagittal Split Ramus Osteotomy: A Randomized Controlled Study. Zhang H; He Y; Chen Y; Liu J; Jin Q; Xu S; Fu X; Qiao J; Yu B; Niu F Front Surg; 2021; 8():705532. PubMed ID: 35004831 [No Abstract] [Full Text] [Related]
5. 3D Printed Cardiac Models as an Adjunct to Traditional Teaching of Anatomy in Congenital Heart Disease-A Randomised Controlled Study. Tarca A; Woo N; Bain S; Crouchley D; McNulty E; Yim D Heart Lung Circ; 2023 Dec; 32(12):1443-1450. PubMed ID: 38007317 [TBL] [Abstract][Full Text] [Related]
6. DICOM 3D viewers, virtual reality or 3D printing - a pilot usability study for assessing the preference of orthopedic surgeons. Popescu D; Marinescu R; Laptoiu D; Deac GC; Cotet CE Proc Inst Mech Eng H; 2021 Sep; 235(9):1014-1024. PubMed ID: 34176364 [TBL] [Abstract][Full Text] [Related]
7. Fast-track virtual reality for cardiac imaging in congenital heart disease. Raimondi F; Vida V; Godard C; Bertelli F; Reffo E; Boddaert N; El Beheiry M; Masson JB J Card Surg; 2021 Jul; 36(7):2598-2602. PubMed ID: 33760302 [TBL] [Abstract][Full Text] [Related]
8. Clinical Value of Virtual Reality versus 3D Printing in Congenital Heart Disease. Lau I; Gupta A; Sun Z Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34198642 [TBL] [Abstract][Full Text] [Related]
9. Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects. White SC; Sedler J; Jones TW; Seckeler M Congenit Heart Dis; 2018 Nov; 13(6):1045-1049. PubMed ID: 30230245 [TBL] [Abstract][Full Text] [Related]
10. Full-sized realistic 3D printed models of liver and tumour anatomy: a useful tool for the clinical medicine education of beginning trainees. Bao G; Yang P; Yi J; Peng S; Liang J; Li Y; Guo D; Li H; Ma K; Yang Z BMC Med Educ; 2023 Aug; 23(1):574. PubMed ID: 37582729 [TBL] [Abstract][Full Text] [Related]
11. What is the value of 3D virtual reality in understanding acetabular fractures? Brouwers L; Pull Ter Gunne AF; de Jongh MA; Maal TJJ; Vreeken R; van der Heijden FHWM; Leenen LPH; Spanjersberg WR; van Helden SH; Verbeek DO; Bemelman M; Lansink KWW Eur J Orthop Surg Traumatol; 2020 Jan; 30(1):109-116. PubMed ID: 31531739 [TBL] [Abstract][Full Text] [Related]
12. Randomized study comparing 3D virtual reality and conventional 2D on-screen teaching of cerebrovascular anatomy. Greuter L; De Rosa A; Cattin P; Croci DM; Soleman J; Guzman R Neurosurg Focus; 2021 Aug; 51(2):E18. PubMed ID: 34333473 [TBL] [Abstract][Full Text] [Related]
13. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Patel N; Costa A; Sanders SP; Ezon D Int J Cardiovasc Imaging; 2021 Jul; 37(7):2283-2290. PubMed ID: 33677745 [TBL] [Abstract][Full Text] [Related]
14. Virtual Reality-based Methods for Training Novice Electrophysiology Trainees-A Pilot Study. Gorbaty B; Arango S; Buyck D; James RC; Porter ST; Iaizzo P; Perry TE; Seslar S J Innov Card Rhythm Manag; 2023 Sep; 14(9):5583-5599. PubMed ID: 37781721 [TBL] [Abstract][Full Text] [Related]
15. Integration of case-based learning and three-dimensional printing for tetralogy of fallot instruction in clinical medical undergraduates: a randomized controlled trial. Zhao J; Gong X; Ding J; Xiong K; Zhuang K; Huang R; Li S; Miao H BMC Med Educ; 2024 May; 24(1):571. PubMed ID: 38789956 [TBL] [Abstract][Full Text] [Related]
16. Medical Student Perception of a Virtual Reality Training Module for Anatomy Education. Kolla S; Elgawly M; Gaughan JP; Goldman E Med Sci Educ; 2020 Sep; 30(3):1201-1210. PubMed ID: 34457783 [TBL] [Abstract][Full Text] [Related]
17. Virtual Functional Endoscopic Sinus Surgery Simulation with 3D-Printed Models for Mixed-Reality Nasal Endoscopy. Barber SR; Jain S; Son YJ; Chang EH Otolaryngol Head Neck Surg; 2018 Nov; 159(5):933-937. PubMed ID: 30200812 [TBL] [Abstract][Full Text] [Related]
18. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease. Loke YH; Harahsheh AS; Krieger A; Olivieri LJ BMC Med Educ; 2017 Mar; 17(1):54. PubMed ID: 28284205 [TBL] [Abstract][Full Text] [Related]
19. Role of virtual reality in congenital heart disease. Ong CS; Krishnan A; Huang CY; Spevak P; Vricella L; Hibino N; Garcia JR; Gaur L Congenit Heart Dis; 2018 May; 13(3):357-361. PubMed ID: 29399969 [TBL] [Abstract][Full Text] [Related]
20. Utility of 3D Printed Cardiac Models for Medical Student Education in Congenital Heart Disease: Across a Spectrum of Disease Severity. Smerling J; Marboe CC; Lefkowitch JH; Pavlicova M; Bacha E; Einstein AJ; Naka Y; Glickstein J; Farooqi KM Pediatr Cardiol; 2019 Aug; 40(6):1258-1265. PubMed ID: 31240370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]