These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 36773362)

  • 1. Systematical construction of rice flavor types based on HS-SPME-GC-MS and sensory evaluation.
    Zhou Y; Gao S; Wei J; Chen X; Zhu S; Zhou X
    Food Chem; 2023 Jul; 413():135604. PubMed ID: 36773362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods.
    Xia Q; Mei J; Yu W; Li Y
    Food Res Int; 2017 Jan; 91():103-114. PubMed ID: 28290313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of key aroma-active compounds in four commercial egg flavor Sachimas with differing egg content.
    Yang P; Zheng Y; You M; Song H; Zou T
    J Food Biochem; 2019 Dec; 43(12):e13040. PubMed ID: 31502280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute contents of aroma-affecting volatiles in cooked rice determined by one-step rice cooking and volatile extraction coupled with standard-addition calibration using HS-SPME/GC-MS.
    Wimonmuang K; Lee YS
    Food Chem; 2024 May; 440():138271. PubMed ID: 38150906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the flavor profile and dynamic changes in Chinese traditional fish sauce (Yu-lu) based on electronic nose, SPME-GC-MS and HS-GC-IMS.
    Chen J; Wang W; Jin J; Li H; Chen F; Fei Y; Wang Y
    Food Res Int; 2024 Sep; 192():114772. PubMed ID: 39147494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aroma characterization of chinese rice wine by gas chromatography-olfactometry, chemical quantitative analysis, and aroma reconstitution.
    Chen S; Xu Y; Qian MC
    J Agric Food Chem; 2013 Nov; 61(47):11295-302. PubMed ID: 24099139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and metabolism pathway of volatile compounds in walnut oil obtained from various ripening stages via HS-GC-IMS and HS-SPME-GC-MS.
    Xi BN; Zhang JJ; Xu X; Li C; Shu Y; Zhang Y; Shi X; Shen Y
    Food Chem; 2024 Mar; 435():137547. PubMed ID: 37769558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of aroma compounds in Chinese rice wine Qu by solvent-assisted flavor evaporation and headspace solid-phase microextraction.
    Mo X; Xu Y; Fan W
    J Agric Food Chem; 2010 Feb; 58(4):2462-9. PubMed ID: 20088505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristic Volatile Fingerprints and Odor Activity Values in Different Citrus-Tea by HS-GC-IMS and HS-SPME-GC-MS.
    Qi H; Ding S; Pan Z; Li X; Fu F
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33352716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavor profile analysis of grilled lamb seasoned with classic salt, chili pepper, and cumin (Cuminum cyminum) through HS-SPME-GC-MS, HS-GC-IMS, E-nose techniques, and sensory evaluation on Sonit sheep.
    Yao W; Ma S; Wu H; Liu D; Liu J; Zhang M
    Food Chem; 2024 Oct; 454():139514. PubMed ID: 38797107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile flavor behavior characterization of Hericium erinaceus during postharvest storage using E-nose, HS-GC-IMS, and HS-SPME-GC-MS after treated with electron-beam generated X-ray irradiation.
    Zhong Y; Cui Y; Yu J; Yan S; Bai J; Xu H; Li M
    Food Chem; 2024 Oct; 454():139771. PubMed ID: 38797093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato.
    Zhang R; Tang C; Jiang B; Mo X; Wang Z
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics.
    Su D; He JJ; Zhou YZ; Li YL; Zhou HJ
    Food Chem; 2022 Mar; 373(Pt B):131587. PubMed ID: 34838407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electron-beam irradiation on volatile flavor compounds of salmon fillets by the molecular sensory science technique.
    Guo H; Feng T; Qi W; Kong Q; Yue L; Wang H
    J Food Sci; 2021 Jan; 86(1):184-193. PubMed ID: 33249575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of volatiles and odor-active compounds of aromatic rice by OSME analysis and SPME/GC-MS.
    Dias LG; Hacke A; Bergara SF; Villela OV; Mariutti LRB; Bragagnolo N
    Food Res Int; 2021 Apr; 142():110206. PubMed ID: 33773681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aroma patterns of Beijing rice vinegar and their potential biomarker for traditional Chinese cereal vinegars.
    Zhang X; Wang P; Xu D; Wang W; Zhao Y
    Food Res Int; 2019 May; 119():398-410. PubMed ID: 30884670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried.
    Ramírez-Rodrigues MM; Balaban MO; Marshall MR; Rouseff RL
    J Food Sci; 2011 Mar; 76(2):C212-7. PubMed ID: 21535737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling the Molecular Basis of Mascarpone Cheese Aroma: VOCs analysis by SPME-GC/MS and PTR-ToF-MS.
    Capozzi V; Lonzarich V; Khomenko I; Cappellin L; Navarini L; Biasioli F
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32164157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aroma Investigation of New and Standard Apple Varieties Grown at Two Altitudes Using Gas Chromatography-Mass Spectrometry Combined with Sensory Analysis.
    Chitarrini G; Dordevic N; Guerra W; Robatscher P; Lozano L
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32630090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of Jinhua Ham Classification Method Based on Volatile Flavor Substances and Determination of Key Odor Biomarkers.
    Xu Y; Shui M; Chen D; Ma X; Feng T
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.