BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 36773365)

  • 1. Dual-channel molecularly imprinted sensor based on dual-potential electrochemiluminescence of Zn-MOFs for double detection of trace chloramphenicol.
    Zhao Y; Wang R; Wang Y; Jie G; Zhou H
    Food Chem; 2023 Jul; 413():135627. PubMed ID: 36773365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO
    Zhang W; Xiong H; Chen M; Zhang X; Wang S
    Biosens Bioelectron; 2017 Oct; 96():55-61. PubMed ID: 28460332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification.
    Li S; Ma X; Pang C; Wang M; Yin G; Xu Z; Li J; Luo J
    Biosens Bioelectron; 2021 Mar; 176():112944. PubMed ID: 33421761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold-copper-doped lanthanide luminescent metal-organic backbone induced self-enhanced molecularly imprinted ECL sensors for ultra-sensitive detection of chlorpyrifos.
    Fang Y; Li Y; Zang X; Chen Y; Wang X; Wang N; Meng X; Cui B
    Food Chem; 2024 Jun; 443():138533. PubMed ID: 38320376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-assisted smartphone-based molecularly imprinted electrochemiluminescence detection sensing platform: Protable device and visual monitoring furosemide.
    Zhang Y; Cui Y; Sun M; Wang T; Liu T; Dai X; Zou P; Zhao Y; Wang X; Wang Y; Zhou M; Su G; Wu C; Yin H; Rao H; Lu Z
    Biosens Bioelectron; 2022 Aug; 209():114262. PubMed ID: 35429772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel Bi
    Liu N; Wang D; Li Z; Xing Y; Ma Q; Zhang Z
    Food Chem; 2024 Jun; 444():138594. PubMed ID: 38309076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc-Metal Organic Frameworks: A Coreactant-free Electrochemiluminescence Luminophore for Ratiometric Detection of miRNA-133a.
    Wang X; Xiao S; Yang C; Hu C; Wang X; Zhen S; Huang C; Li Y
    Anal Chem; 2021 Oct; 93(42):14178-14186. PubMed ID: 34637279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel nanoclusters as a novel emitter for molecularly imprinted electrochemiluminescence based sensor toward nanomolar detection of creatinine.
    Babamiri B; Salimi A; Hallaj R; Hasanzadeh M
    Biosens Bioelectron; 2018 Jun; 107():272-279. PubMed ID: 29482181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simplified molecularly imprinted ECL sensor based on Mn
    Kuang K; Li Y; Chen Y; Ji Y; Jia N
    Analyst; 2024 Feb; 149(4):1318-1326. PubMed ID: 38251970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electrochemiluminescence coreactant accelerator of metal-organic frameworks grafted with
    Wang XT; Jiang YR; Huang LY; Gu YX; Huang XQ; Wang AJ; Yuan PX; Feng JJ
    Analyst; 2021 Sep; 146(19):5995-6004. PubMed ID: 34505605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore.
    Babamiri B; Salimi A; Hallaj R
    Biosens Bioelectron; 2018 Oct; 117():332-339. PubMed ID: 29933224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-channel MIRECL portable devices with impedance effect coupled smartphone and machine learning system for tyramine identification and quantification.
    Lu Z; Qin J; Wu C; Yin J; Sun M; Su G; Wang X; Wang Y; Ye J; Liu T; Rao H; Feng L
    Food Chem; 2023 Dec; 429():136920. PubMed ID: 37487397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecularly imprinted electrochemiluminescence sensor based on ZIF-8 doped with CdSe quantum dots for the detection of trace estriol.
    Meng Y; Pu J; Gan J; Li J
    Luminescence; 2022 Jul; 37(7):1109-1119. PubMed ID: 35470931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecularly imprinted sensor based on Russian Matryoshka structured molecules for enhanced specific identification and double amplification in ultra-trace Tb
    Li J; Yang B; Pan H; Xu G
    Biosens Bioelectron; 2018 Jun; 109():224-229. PubMed ID: 29567567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overcoming Aggregation-Induced Quenching by Metal-Organic Framework for Electrochemiluminescence (ECL) Enhancement: Zn-PTC as a New ECL Emitter for Ultrasensitive MicroRNAs Detection.
    Wang JM; Yao LY; Huang W; Yang Y; Liang WB; Yuan R; Xiao DR
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44079-44085. PubMed ID: 34514796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple signal-enhanced electrochemiluminescence aptamer sensors based on carboxylated ruthenium (II) complexes for acetamiprid detection.
    Li C; Zhang B; Wu Z; Liu Y; Xu R; Wang Y; Zhang Y; Wei Q
    Anal Chim Acta; 2024 Jun; 1309():342677. PubMed ID: 38772666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A signal "on-off-on"-type electrochemiluminescence aptamer sensor for detection of sulfadimethoxine based on Ru@Zn-oxalate MOF composites.
    Wang J; Xu X; Zheng L; Guo Q; Nie G
    Mikrochim Acta; 2023 Mar; 190(4):131. PubMed ID: 36912979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-assisted Te-CdS@Mn
    Lu Z; Dai S; Liu T; Yang J; Sun M; Wu C; Su G; Wang X; Rao H; Yin H; Zhou X; Ye J; Wang Y
    Biosens Bioelectron; 2023 Feb; 222():114996. PubMed ID: 36521203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual-recognition MIP-ECL sensor based on boric acid functional carbon dots for detection of dopamine.
    Zhang T; Long D; Gu X; Yang M
    Mikrochim Acta; 2022 Sep; 189(10):389. PubMed ID: 36136158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust molecularly imprinted electrochemiluminescence sensor based on a Ni-Co nanoarray for the sensitive detection of spiramycin.
    Li Y; Xu J; Cheng R; Yang J; Li C; Liu Y; Xu R; Wei Q; Zhang Y
    Analyst; 2022 Nov; 147(22):5178-5186. PubMed ID: 36239749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.