These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36773519)

  • 1. Surface stress decomposition in large amplitude oscillatory interfacial dilatation of complex interfaces.
    de Groot A; Yang J; Sagis LMC
    J Colloid Interface Sci; 2023 May; 638():569-581. PubMed ID: 36773519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial rheology and relaxation behavior of adsorption layers of the triterpenoid saponin Escin.
    Giménez-Ribes G; Habibi M; Sagis LMC
    J Colloid Interface Sci; 2020 Mar; 563():281-290. PubMed ID: 31881493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of oleosins and phosphatidylcholines on the membrane mechanics of oleosomes.
    Yang J; Plankensteiner L; de Groot A; Hennebelle M; Sagis LMC; Nikiforidis CV
    J Colloid Interface Sci; 2025 Jan; 678(Pt C):1001-1011. PubMed ID: 39326161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface dilational rheological properties in the nonlinear domain.
    Bykov AG; Liggieri L; Noskov BA; Pandolfini P; Ravera F; Loglio G
    Adv Colloid Interface Sci; 2015 Aug; 222():110-8. PubMed ID: 25107511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-linear surface dilatational rheology as a tool for understanding microstructures of air/water interfaces stabilized by oligofructose fatty acid esters.
    van Kempen SE; Schols HA; van der Linden E; Sagis LM
    Soft Matter; 2013 Oct; 9(40):9579-92. PubMed ID: 26029765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced O/W emulsifying properties of pea proteins via deamidation: Insights into interfacial behavior.
    Luo L; Li P; Deng Y; Liu G; Shi L; Zhang Y; Tang X; Zhou P; Zhao Z; Zhang M
    Int J Biol Macromol; 2024 Sep; 280(Pt 2):135794. PubMed ID: 39306155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation Behavior and Nonlinear Surface Rheology of PEO-PPO-PEO Triblock Copolymers at the Air-Water Interface.
    Moghimikheirabadi A; Fischer P; Kröger M; Sagis LMC
    Langmuir; 2019 Nov; 35(44):14388-14396. PubMed ID: 31592664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear stress deformation behavior of interfaces stabilized by food-based ingredients.
    Sagis LM; Humblet-Hua KN; van Kempen SE
    J Phys Condens Matter; 2014 Nov; 26(46):464105. PubMed ID: 25347358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft gliadin nanoparticles at air/water interfaces: The transition from a particle-laden layer to a thick protein film.
    Peng D; Yang J; de Groot A; Jin W; Deng Q; Li B; M C Sagis L
    J Colloid Interface Sci; 2024 Sep; 669():236-247. PubMed ID: 38718577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavior of plant-dairy protein blends at air-water and oil-water interfaces.
    Hinderink EBA; Sagis L; Schroën K; Berton-Carabin CC
    Colloids Surf B Biointerfaces; 2020 Apr; 192():111015. PubMed ID: 32416469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear viscoelasticity and shear localization at complex fluid interfaces.
    Erni P; Parker A
    Langmuir; 2012 May; 28(20):7757-67. PubMed ID: 22563849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the textures of composite skin care formulations using large amplitude oscillatory shear.
    Gillece T; McMullen RL; Fares H; Senak L; Ozkan S; Foltis L
    J Cosmet Sci; 2016; 67(3):121-59. PubMed ID: 29394015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of multiphase systems with complex microstructure. II. Particle-stabilized interfaces.
    Sagis LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022150. PubMed ID: 24032817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear viscoelastic characterization of human vocal fold tissues under large-amplitude oscillatory shear (LAOS).
    Chan RW
    J Rheol (N Y N Y); 2018 May; 62(3):695-712. PubMed ID: 29780189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear rheological behavior of gelatin gels: In situ gels and individual gel layers filled with hard particles.
    Goudoulas TB; Germann N
    J Colloid Interface Sci; 2019 Nov; 556():1-11. PubMed ID: 31415921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of interfacial elasticity for the rheological properties of saponin-stabilized emulsions.
    Tsibranska S; Tcholakova S; Golemanov K; Denkov N; Pelan E; Stoyanov SD
    J Colloid Interface Sci; 2020 Mar; 564():264-275. PubMed ID: 31923825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface.
    Freer EM; Yim KS; Fuller GG; Radke CJ
    Langmuir; 2004 Nov; 20(23):10159-67. PubMed ID: 15518508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.
    Wan Z; Yang X; Sagis LM
    Langmuir; 2016 Apr; 32(15):3679-90. PubMed ID: 27043221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic theory for nematic interfaces.
    Rey AD
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1540-9. PubMed ID: 11046435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of Long Fibrils and Peptides to Surface and Foaming Behavior of Soy Protein Fibril System.
    Wan Z; Yang X; Sagis LM
    Langmuir; 2016 Aug; 32(32):8092-101. PubMed ID: 27452662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.