These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 36773707)

  • 1. Genetic engineering of bacteriophages: Key concepts, strategies, and applications.
    Hussain W; Yang X; Ullah M; Wang H; Aziz A; Xu F; Asif M; Ullah MW; Wang S
    Biotechnol Adv; 2023; 64():108116. PubMed ID: 36773707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Many Applications of Engineered Bacteriophages-An Overview.
    Gibb B; Hyman P; Schneider CL
    Pharmaceuticals (Basel); 2021 Jun; 14(7):. PubMed ID: 34208847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria.
    Vaks L; Benhar I
    Methods Mol Biol; 2011; 726():187-206. PubMed ID: 21424451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends.
    Lee C; Kim H; Ryu S
    Crit Rev Food Sci Nutr; 2023; 63(27):8919-8938. PubMed ID: 35400249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages.
    Kim BO; Kim ES; Yoo YJ; Bae HW; Chung IY; Cho YH
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30889807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically Engineered Phages: a Review of Advances over the Last Decade.
    Pires DP; Cleto S; Sillankorva S; Azeredo J; Lu TK
    Microbiol Mol Biol Rev; 2016 Sep; 80(3):523-43. PubMed ID: 27250768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reporter Phage-Based Detection of Bacterial Pathogens: Design Guidelines and Recent Developments.
    Meile S; Kilcher S; Loessner MJ; Dunne M
    Viruses; 2020 Aug; 12(9):. PubMed ID: 32858938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens.
    Viertel TM; Ritter K; Horz HP
    J Antimicrob Chemother; 2014 Sep; 69(9):2326-36. PubMed ID: 24872344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering bacteriophages for enhanced host range and efficacy: insights from bacteriophage-bacteria interactions.
    Jia HJ; Jia PP; Yin S; Bu LK; Yang G; Pei DS
    Front Microbiol; 2023; 14():1172635. PubMed ID: 37323893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phages as delivery vehicles and phage display.
    Makky S; Abdelrahman F; Easwaran M; Safwat A; El-Shibiny A
    Prog Mol Biol Transl Sci; 2023; 201():119-132. PubMed ID: 37770167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions.
    Ragothaman M; Yoo SY
    Vaccines (Basel); 2023 Apr; 11(5):. PubMed ID: 37243023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Making the leap from technique to treatment - genetic engineering is paving the way for more efficient phage therapy.
    Lewis JM; Williams J; Sagona AP
    Biochem Soc Trans; 2024 Jun; 52(3):1373-1384. PubMed ID: 38716972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacturing of bacteriophages for therapeutic applications.
    João J; Lampreia J; Prazeres DMF; Azevedo AM
    Biotechnol Adv; 2021; 49():107758. PubMed ID: 33895333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Bacteriophages as Versatile Biologics.
    Kilcher S; Loessner MJ
    Trends Microbiol; 2019 Apr; 27(4):355-367. PubMed ID: 30322741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future.
    Łobocka M; Dąbrowska K; Górski A
    BioDrugs; 2021 May; 35(3):255-280. PubMed ID: 33881767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteriophages, phage endolysins and antimicrobial peptides - the possibilities for their common use to combat infections and in the design of new drugs.
    Mirski T; Lidia M; Nakonieczna A; Gryko R
    Ann Agric Environ Med; 2019 Jun; 26(2):203-209. PubMed ID: 31232046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of designer phage encoding recombinant gene payloads.
    Schmitt DS; Siegel SD; Selle K
    Trends Biotechnol; 2024 Mar; 42(3):326-338. PubMed ID: 37833198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered phage enzymes against drug-resistant pathogens: a review on advances and applications.
    Hassannia M; Naderifar M; Salamy S; Akbarizadeh MR; Mohebi S; Moghadam MT
    Bioprocess Biosyst Eng; 2024 Mar; 47(3):301-312. PubMed ID: 37962644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered M13 phage as a novel therapeutic bionanomaterial for clinical applications: From tissue regeneration to cancer therapy.
    Chang C; Guo W; Yu X; Guo C; Zhou N; Guo X; Huang RL; Li Q; Zhu Y
    Mater Today Bio; 2023 Jun; 20():100612. PubMed ID: 37063776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phage Endolysins: Advances in the World of Food Safety.
    Nazir A; Xu X; Liu Y; Chen Y
    Cells; 2023 Aug; 12(17):. PubMed ID: 37681901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.