These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36773757)

  • 1. OsCRY2 and OsFBO10 co-regulate photomorphogenesis and photoperiodic flowering in indica rice.
    Singh S; Vergish S; Jain N; Sharma AK; Khurana P; Khurana JP
    Plant Sci; 2023 May; 330():111631. PubMed ID: 36773757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1.
    Takase T; Nishiyama Y; Tanihigashi H; Ogura Y; Miyazaki Y; Yamada Y; Kiyosue T
    Plant J; 2011 Aug; 67(4):608-21. PubMed ID: 21518052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRY2 gene of rice (Oryza sativa subsp. indica) encodes a blue light sensory receptor involved in regulating flowering, plant height and partial photomorphogenesis in dark.
    Singh S; Sharma P; Mishra S; Khurana P; Khurana JP
    Plant Cell Rep; 2023 Jan; 42(1):73-89. PubMed ID: 36251035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering.
    Song YH; Estrada DA; Johnson RS; Kim SK; Lee SY; MacCoss MJ; Imaizumi T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17672-7. PubMed ID: 25422419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OsHAL3, a Blue Light-Responsive Protein, Interacts with the Floral Regulator Hd1 to Activate Flowering in Rice.
    Su L; Shan JX; Gao JP; Lin HX
    Mol Plant; 2016 Feb; 9(2):233-244. PubMed ID: 26537047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis.
    Ito S; Song YH; Imaizumi T
    Mol Plant; 2012 May; 5(3):573-82. PubMed ID: 22402262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of rice cryptochromes in de-etiolation responses and flowering.
    Hirose F; Shinomura T; Tanabata T; Shimada H; Takano M
    Plant Cell Physiol; 2006 Jul; 47(7):915-25. PubMed ID: 16760221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins.
    Lee CM; Feke A; Li MW; Adamchek C; Webb K; Pruneda-Paz J; Bennett EJ; Kay SA; Gendron JM
    Plant Physiol; 2018 Jul; 177(3):1170-1186. PubMed ID: 29794020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE interacts with OsCRY2 and promotes flowering by upregulating Early heading date 1.
    Lee SJ; Kim Y; Kang K; Yoon H; Kang J; Cho SH; Paek NC
    Plant Cell Environ; 2024 Jul; ():. PubMed ID: 39012205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression.
    Baudry A; Ito S; Song YH; Strait AA; Kiba T; Lu S; Henriques R; Pruneda-Paz JL; Chua NH; Tobin EM; Kay SA; Imaizumi T
    Plant Cell; 2010 Mar; 22(3):606-22. PubMed ID: 20354196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Photoperiodic Flowering Time Regulator FKF1 Negatively Regulates Cellulose Biosynthesis.
    Yuan N; Balasubramanian VK; Chopra R; Mendu V
    Plant Physiol; 2019 Aug; 180(4):2240-2253. PubMed ID: 31221729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod.
    Han SH; Yoo SC; Lee BD; An G; Paek NC
    Plant Cell Environ; 2015 Dec; 38(12):2527-40. PubMed ID: 25850808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional domain studies uncover novel roles for the ZTL Kelch repeat domain in clock function.
    Feke A; Vanderwall M; Liu W; Gendron JM
    PLoS One; 2021; 16(3):e0235938. PubMed ID: 33730063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
    Park MJ; Kwon YJ; Gil KE; Park CM
    BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GIGANTEA Regulates the Timing Stabilization of CONSTANS by Altering the Interaction between FKF1 and ZEITLUPE.
    Hwang DY; Park S; Lee S; Lee SS; Imaizumi T; Song YH
    Mol Cells; 2019 Oct; 42(10):693-701. PubMed ID: 31617339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.
    Liu H; Wang Q; Liu Y; Zhao X; Imaizumi T; Somers DE; Tobin EM; Lin C
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17582-7. PubMed ID: 24101505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering.
    Wu JF; Wang Y; Wu SH
    Plant Physiol; 2008 Oct; 148(2):948-59. PubMed ID: 18676661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The F-box protein FKF1 inhibits dimerization of COP1 in the control of photoperiodic flowering.
    Lee BD; Kim MR; Kang MY; Cha JY; Han SH; Nawkar GM; Sakuraba Y; Lee SY; Imaizumi T; McClung CR; Kim WY; Paek NC
    Nat Commun; 2017 Dec; 8(1):2259. PubMed ID: 29273730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher plants use LOV to perceive blue light.
    Demarsy E; Fankhauser C
    Curr Opin Plant Biol; 2009 Feb; 12(1):69-74. PubMed ID: 18930433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis.
    Imaizumi T; Tran HG; Swartz TE; Briggs WR; Kay SA
    Nature; 2003 Nov; 426(6964):302-6. PubMed ID: 14628054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.