These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36773930)

  • 1. A network-based model of dynamic cerebral autoregulation.
    Daher A; Payne S
    Microvasc Res; 2023 May; 147():104503. PubMed ID: 36773930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conducted vascular response as a mediator of hypercapnic cerebrovascular reactivity: A modelling study.
    Daher A; Payne S
    Comput Biol Med; 2024 Mar; 170():107985. PubMed ID: 38245966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating spatial variations in dynamic cerebral autoregulation through a computational model of stenosis.
    Tong Z; Payne SJ
    Physiol Meas; 2023 Apr; 44(4):. PubMed ID: 37015230
    [No Abstract]   [Full Text] [Related]  

  • 4. Lack of linear correlation between dynamic and steady-state cerebral autoregulation.
    de Jong DLK; Tarumi T; Liu J; Zhang R; Claassen JAHR
    J Physiol; 2017 Aug; 595(16):5623-5636. PubMed ID: 28597991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic cerebral autoregulation is governed by two time constants: Arterial transit time and feedback time constant.
    Payne SJ
    J Physiol; 2024 May; 602(9):1953-1966. PubMed ID: 38630963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Linear Characterisation of Cerebral Pressure-Flow Dynamics in Humans.
    Saleem S; Teal PD; Kleijn WB; O'Donnell T; Witter T; Tzeng YC
    PLoS One; 2015; 10(9):e0139470. PubMed ID: 26421429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new mathematical model of dynamic cerebral autoregulation based on a flow dependent feedback mechanism.
    Kirkham SK; Craine RE; Birch AA
    Physiol Meas; 2001 Aug; 22(3):461-73. PubMed ID: 11556667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of transcranial Doppler ultrasonography-determined dynamic cerebral autoregulation estimated using transfer function analysis.
    Watanabe H; Washio T; Saito S; Hirasawa A; Suzuki R; Shibata S; Brothers RM; Ogoh S
    J Clin Monit Comput; 2022 Dec; 36(6):1711-1721. PubMed ID: 35075510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior Fitting of Arterial Resistance and Compliance Parameters With Genetic Algorithms in Models of Dynamic Cerebral Autoregulation.
    Robles FB; Panerai RB; Katsogridakis E; Chacon M
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):503-512. PubMed ID: 34314353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An effective model of cerebrovascular pressure reactivity and blood flow autoregulation.
    Acosta S; Penny DJ; Brady KM; Rusin CG
    Microvasc Res; 2018 Jan; 115():34-43. PubMed ID: 28847705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of dynamic cerebral autoregulation and CO
    Marmarelis VZ; Shin DC; Oesterreich M; Mueller M
    J Appl Physiol (1985); 2020 Feb; 128(2):397-409. PubMed ID: 31917625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why and how to assess cerebral autoregulation?
    Moerman A; De Hert S
    Best Pract Res Clin Anaesthesiol; 2019 Jun; 33(2):211-220. PubMed ID: 31582100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling of cerebral blood circulation and cerebral autoregulation: towards preventing intracranial hemorrhages in preterm newborns.
    Lampe R; Botkin N; Turova V; Blumenstein T; Alves-Pinto A
    Comput Math Methods Med; 2014; 2014():965275. PubMed ID: 25126111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling dynamic changes in blood flow and volume in the cerebral vasculature.
    Payne SJ; El-Bouri WK
    Neuroimage; 2018 Aug; 176():124-137. PubMed ID: 29680470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of the cerebral autoregulatory response to paced hyperventilation assessed using subcomponent and time-varying analyses.
    Clough RH; Minhas JS; Haunton VJ; Hanby MF; Robinson TG; Panerai RB
    J Appl Physiol (1985); 2022 Aug; 133(2):311-319. PubMed ID: 35736950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prenatal exercise and cardiovascular health (PEACH) study: impact of acute and chronic exercise on cerebrovascular hemodynamics and dynamic cerebral autoregulation.
    Skow RJ; Labrecque L; Rosenberger JA; Brassard P; Steinback CD; Davenport MH
    J Appl Physiol (1985); 2022 Jan; 132(1):247-260. PubMed ID: 34818074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicking of cerebral autoregulation by flow-dependent cerebrovascular resistance: a feasibility study.
    Kaufmann TA; Wong KC; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2012 Apr; 36(4):E97-101. PubMed ID: 22372981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiscale 0-D/3-D approach to patient-specific adaptation of a cerebral autoregulation model for computational fluid dynamics studies of cardiopulmonary bypass.
    Neidlin M; Steinseifer U; Kaufmann TA
    J Biomech; 2014 Jun; 47(8):1777-83. PubMed ID: 24746017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomic neuropathy is associated with impairment of dynamic cerebral autoregulation in type 1 diabetes.
    Nasr N; Czosnyka M; Arevalo F; Hanaire H; Guidolin B; Larrue V
    Auton Neurosci; 2011 Feb; 160(1-2):59-63. PubMed ID: 21036672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.