These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36774371)

  • 1. Assessing ternary materials for fluoride-ion batteries.
    McTaggart DH; Sundberg JD; McRae LM; Warren SC
    Sci Data; 2023 Feb; 10(1):90. PubMed ID: 36774371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-Layered Perovskite Oxyfluoride Cathodes with High Capacity Involving O-O Bond Formation for Fluoride-Ion Batteries.
    Miki H; Yamamoto K; Nakaki H; Yoshinari T; Nakanishi K; Nakanishi S; Iba H; Miyawaki J; Harada Y; Kuwabara A; Wang Y; Watanabe T; Matsunaga T; Maeda K; Kageyama H; Uchimoto Y
    J Am Chem Soc; 2024 Feb; 146(6):3844-3853. PubMed ID: 38193701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rocking-Chair Aqueous Fluoride-Ion Batteries Enabled by Hydrogen Bonding Competition.
    Wang H; Lei C; Liu T; Xu C; He X; Liang X
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202401483. PubMed ID: 38488325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Zero-Strain Insertion Cathode Material for Room-Temperature Fluoride-Ion Batteries.
    Zhang S; Wang T; Zhang J; Miao Y; Yin Q; Wu Z; Wu Y; Yuan Q; Han J
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24518-24525. PubMed ID: 35603940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal Fluoride Cathode Materials for Lithium Rechargeable Batteries: Focus on Iron Fluorides.
    Sun L; Li Y; Feng W
    Small Methods; 2023 Feb; 7(2):e2201152. PubMed ID: 36564355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rechargeable batteries with high energy storage activated by in-situ induced fluorination of carbon nanotube cathode.
    Cui X; Chen J; Wang T; Chen W
    Sci Rep; 2014 Jun; 4():5310. PubMed ID: 24931036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries.
    Nathan MGT; Yu H; Kim GT; Kim JH; Cho JS; Kim J; Kim JK
    Adv Sci (Weinh); 2022 Jun; 9(18):e2105882. PubMed ID: 35478355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus-Based Materials for High-Performance Alkaline Metal Ion Batteries: Progress and Prospect.
    Zeng L; Huang L; Zhu J; Li P; Chu PK; Wang J; Yu XF
    Small; 2022 Sep; 18(39):e2201808. PubMed ID: 36026537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-in-Salt Electrolytes for Fluoride Ion Batteries.
    Alshangiti O; Galatolo G; Rees GJ; Guo H; Quirk JA; Dawson JA; Pasta M
    ACS Energy Lett; 2023 Jun; 8(6):2668-2673. PubMed ID: 37324537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.
    Wu F; Maier J; Yu Y
    Chem Soc Rev; 2020 Mar; 49(5):1569-1614. PubMed ID: 32055806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cu-Substituted NiF
    Villa C; Kim S; Lu Y; Dravid VP; Wu J
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):647-654. PubMed ID: 30518211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotube-CoF2 Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability.
    Wang X; Gu W; Lee JT; Nitta N; Benson J; Magasinski A; Schauer MW; Yushin G
    Small; 2015 Oct; 11(38):5164-73. PubMed ID: 26224378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Phase Reaction Mechanism for Fluorination and Defluorination in Fluoride-Shuttle Batteries: A First-Principles Study.
    Haruyama J; Okazaki KI; Morita Y; Nakamoto H; Matsubara E; Ikeshoji T; Otani M
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):428-435. PubMed ID: 31830786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress on Fe-Based Polyanionic Oxide Cathodes Materials toward Grid-Scale Energy Storage for Sodium-Ion Batteries.
    Yang W; Liu Q; Zhao Y; Mu D; Tan G; Gao H; Li L; Chen R; Wu F
    Small Methods; 2022 Sep; 6(9):e2200555. PubMed ID: 35780504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrochlore-Type Iron Hydroxy Fluorides as Low-Cost Lithium-Ion Cathode Materials for Stationary Energy Storage.
    Baumgärtner JF; Wörle M; Guntlin CP; Krumeich F; Siegrist S; Vogt V; Stoian DC; Chernyshov D; van Beek W; Kravchyk KV; Kovalenko MV
    Adv Mater; 2023 Dec; 35(49):e2304158. PubMed ID: 37522526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoride-Lithium Battery.
    Wu F; Srot V; Chen S; Lorger S; van Aken PA; Maier J; Yu Y
    Adv Mater; 2019 Oct; 31(43):e1905146. PubMed ID: 31513323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.