These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 36774691)

  • 1. Biogenic synthesis, molecular docking, biomedical and environmental applications of multifunctional CuO nanoparticles mediated Phragmites australis.
    Kocabas BB; Attar A; Yuka SA; Yapaoz MA
    Bioorg Chem; 2023 Apr; 133():106414. PubMed ID: 36774691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired fabrication of CuONPs synthesized via Cotoneaster and application in dye removal: antioxidant and antibacterial studies.
    Isiksel E; Attar A; Mutlu O; Altikatoglu Yapaoz M
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):161-171. PubMed ID: 35895176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofabrication of
    Sazak C; Attar A; Yilmaz A; Altikatoglu Yapaoz M
    ACS Omega; 2023 Oct; 8(40):36835-36844. PubMed ID: 37841194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eco-friendly approaches of mycosynthesized copper oxide nanoparticles (CuONPs) using Pleurotus citrinopileatus mushroom extracts and their biological applications.
    Manimaran K; Yanto DHY; Kamaraj C; Selvaraj K; Pandiaraj S; M Elgorban A; Vignesh S; Kim H
    Environ Res; 2023 Sep; 232():116319. PubMed ID: 37271436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells.
    Shehabeldine AM; Amin BH; Hagras FA; Ramadan AA; Kamel MR; Ahmed MA; Atia KH; Salem SS
    Appl Biochem Biotechnol; 2023 Jan; 195(1):467-485. PubMed ID: 36087233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of copper oxide nanoparticles using Rubia cordifolia bark extract: characterization, antibacterial, antioxidant, larvicidal and photocatalytic activities.
    Vinothkanna A; Mathivanan K; Ananth S; Ma Y; Sekar S
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):42563-42574. PubMed ID: 35175521
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Cherian T; Ali K; Saquib Q; Faisal M; Wahab R; Musarrat J
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31979040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytosynthesis of CuONPs via Laurus nobilis: Determination of antioxidant content, antibacterial activity, and dye decolorization potential.
    Bulut Kocabas B; Attar A; Peksel A; Altikatoglu Yapaoz M
    Biotechnol Appl Biochem; 2021 Aug; 68(4):889-895. PubMed ID: 32835428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using Caesalpinia Sappan extract.
    Sasarom M; Wanachantararak P; Chaijareenont P; Okonogi S
    Drug Discov Ther; 2024 Jul; 18(3):167-177. PubMed ID: 38945877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria.
    Sathiyavimal S; Vasantharaj S; Bharathi D; Saravanan M; Manikandan E; Kumar SS; Pugazhendhi A
    J Photochem Photobiol B; 2018 Nov; 188():126-134. PubMed ID: 30267962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy.
    Díaz-Visurraga J; Daza C; Pozo C; Becerra A; von Plessing C; García A
    Int J Nanomedicine; 2012; 7():3597-612. PubMed ID: 22848180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of biologically active copper oxide nanoparticles as promising novel antibacterial-antibiofilm agents.
    Erci F; Cakir-Koc R; Yontem M; Torlak E
    Prep Biochem Biotechnol; 2020; 50(6):538-548. PubMed ID: 31922463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells.
    Sathiyavimal S; F Durán-Lara E; Vasantharaj S; Saravanan M; Sabour A; Alshiekheid M; Lan Chi NT; Brindhadevi K; Pugazhendhi A
    Food Chem Toxicol; 2022 Oct; 168():113330. PubMed ID: 35926645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental sustainable: Biogenic copper oxide nanoparticles as nano-pesticides for investigating bioactivities against phytopathogens.
    Manzoor MA; Shah IH; Ali Sabir I; Ahmad A; Albasher G; Dar AA; Altaf MA; Shakoor A
    Environ Res; 2023 Aug; 231(Pt 1):115941. PubMed ID: 37100366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities.
    Manikandan DB; Arumugam M; Veeran S; Sridhar A; Krishnasamy Sekar R; Perumalsamy B; Ramasamy T
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):33927-33941. PubMed ID: 33410001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential.
    Vasantharaj S; Sathiyavimal S; Saravanan M; Senthilkumar P; Gnanasekaran K; Shanmugavel M; Manikandan E; Pugazhendhi A
    J Photochem Photobiol B; 2019 Feb; 191():143-149. PubMed ID: 30639996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced photocatalytic activity of novel Canthium coromandelicum leaves based copper oxide nanoparticles for the degradation of textile dyes.
    Selvam K; Albasher G; Alamri O; Sudhakar C; Selvankumar T; Vijayalakshmi S; Vennila L
    Environ Res; 2022 Aug; 211():113046. PubMed ID: 35300965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced polymeric metal/metal oxide bionanocomposite using seaweed
    Amina M; Al Musayeib NM; Alterary S; F El-Tohamy M; A Alhwaiti S
    PeerJ; 2023; 11():e15004. PubMed ID: 36967991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the in vitro anti-inflammatory and anti-Helicobacter pylori activities of chitosan-based biomaterials modified with copper oxide nanoparticles.
    Elmehbad NY; Mohamed NA; Abd El-Ghany NA; Abdel-Aziz MM
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127277. PubMed ID: 37806410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative in situ ROS mediated killing of bacteria with bulk analogue, Eucalyptus leaf extract (ELE)-capped and bare surface copper oxide nanoparticles.
    Ali K; Ahmed B; Ansari SM; Saquib Q; Al-Khedhairy AA; Dwivedi S; Alshaeri M; Khan MS; Musarrat J
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():747-758. PubMed ID: 30948112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.