These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 36774736)

  • 41. Toxicological evaluation of airborne particulate matter. Are cell culture technologies ready to replace animal testing?
    Silvani S; Figliuzzi M; Remuzzi A
    J Appl Toxicol; 2019 Nov; 39(11):1484-1491. PubMed ID: 31025406
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Organs-on-a-Chip.
    Low LA; Sutherland M; Lumelsky N; Selimovic S; Lundberg MS; Tagle DA
    Adv Exp Med Biol; 2020; 1230():27-42. PubMed ID: 32285363
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity.
    Upadhyay S; Palmberg L
    Toxicol Sci; 2018 Jul; 164(1):21-30. PubMed ID: 29534242
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects.
    Sood A; Kumar A; Gupta VK; Kim CM; Han SS
    ACS Biomater Sci Eng; 2023 Jan; 9(1):62-84. PubMed ID: 36541361
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of microfluidic chips in anticancer drug screening.
    Fan XY; Deng ZF; Yan YY; E Orel V; Shypko A; B Orel V; Ivanova D; Pilarsky C; Tang J; Chen ZS; Zhang JY
    Bosn J Basic Med Sci; 2022 Jun; 22(3):302-314. PubMed ID: 34627135
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pumped and pumpless microphysiological systems to study (nano)therapeutics.
    Lee EJ; Krassin ZL; Abaci HE; Mahler GJ; Esch MB
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1911. PubMed ID: 37464464
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of atmospheric pollutants on the Nrf2 survival pathway.
    Rubio V; Valverde M; Rojas E
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):369-82. PubMed ID: 19367423
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfluidic strategies for biomimetic lung chip establishment and SARS-CoV2 study.
    Wang H; Wen T; Zhu W; Li K; Gong X; Li Z
    Mater Today Bio; 2024 Feb; 24():100905. PubMed ID: 38094656
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing.
    Lacombe J; Soldevila M; Zenhausern F
    Prog Mol Biol Transl Sci; 2022; 187(1):41-91. PubMed ID: 35094781
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tailoring biomaterials for biomimetic organs-on-chips.
    Sun L; Bian F; Xu D; Luo Y; Wang Y; Zhao Y
    Mater Horiz; 2023 Oct; 10(11):4724-4745. PubMed ID: 37697735
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips.
    Schulze F; Gao X; Virzonis D; Damiati S; Schneider MR; Kodzius R
    Genes (Basel); 2017 Sep; 8(10):. PubMed ID: 28953246
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems.
    Hughes DJ; Kostrzewski T; Sceats EL
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1593-1604. PubMed ID: 28504617
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lung toxicity of particulates and gaseous pollutants using ex-vivo airway epithelial cell culture systems.
    Lakhdar R; Mumby S; Abubakar-Waziri H; Porter A; Adcock IM; Chung KF
    Environ Pollut; 2022 Jul; 305():119323. PubMed ID: 35447256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Options for modeling the respiratory system: inserts, scaffolds and microfluidic chips.
    Sedláková V; Kloučková M; Garlíková Z; Vašíčková K; Jaroš J; Kandra M; Kotasová H; Hampl A
    Drug Discov Today; 2019 Apr; 24(4):971-982. PubMed ID: 30877077
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges.
    Zarrintaj P; Saeb MR; Stadler FJ; Yazdi MK; Nezhad MN; Mohebbi S; Seidi F; Ganjali MR; Mozafari M
    Adv Biol (Weinh); 2022 Jan; 6(1):e2000526. PubMed ID: 34837667
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human Organs-on-Chips for Virology.
    Tang H; Abouleila Y; Si L; Ortega-Prieto AM; Mummery CL; Ingber DE; Mashaghi A
    Trends Microbiol; 2020 Nov; 28(11):934-946. PubMed ID: 32674988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development.
    Hargrove-Grimes P; Low LA; Tagle DA
    Cells Tissues Organs; 2022; 211(3):269-281. PubMed ID: 34380142
    [TBL] [Abstract][Full Text] [Related]  

  • 58. From 3D cell culture to organs-on-chips.
    Huh D; Hamilton GA; Ingber DE
    Trends Cell Biol; 2011 Dec; 21(12):745-54. PubMed ID: 22033488
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions.
    Sabaté Del Río J; Ro J; Yoon H; Park TE; Cho YK
    Biosens Bioelectron; 2023 Mar; 224():115057. PubMed ID: 36640548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Aryl Hydrocarbon Receptor as an Immune-Modulator of Atmospheric Particulate Matter-Mediated Autoimmunity.
    O'Driscoll CA; Mezrich JD
    Front Immunol; 2018; 9():2833. PubMed ID: 30574142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.