These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36774830)

  • 1. Impaired proactive control in individuals with methamphetamine use disorder: Evidence from ERPs.
    Su B; Zheng M
    J Psychiatr Res; 2023 Apr; 160():47-55. PubMed ID: 36774830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cue Exposure Triggers Inhibitory Deficits in Individuals With Methamphetamine Use Disorder.
    He X; Zhao D; Zhang M; Leng Y; He W
    J Stud Alcohol Drugs; 2021 Mar; 82(2):197-203. PubMed ID: 33823966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological correlates of the cognitive control processes underpinning mixing and switching costs.
    Tarantino V; Mazzonetto I; Vallesi A
    Brain Res; 2016 Sep; 1646():160-173. PubMed ID: 27238463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered proactive control in adults with ADHD: Evidence from event-related potentials during cued task switching.
    Sidlauskaite J; Dhar M; Sonuga-Barke E; Wiersema JR
    Neuropsychologia; 2020 Feb; 138():107330. PubMed ID: 31887312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proactive and reactive control differ between task switching and response rule switching: Event-related potential evidence.
    Chen Y; Cao B; Xie L; Wu J; Li F
    Neuropsychologia; 2022 Jul; 172():108272. PubMed ID: 35597267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patients with Methamphetamine Use Disorder Show Highly Utilized Proactive Inhibitory Control and Intact Reactive Inhibitory Control with Long-Term Abstinence.
    Dai W; Zhou H; Møller A; Wei P; Hu K; Feng K; Han J; Li Q; Liu X
    Brain Sci; 2022 Jul; 12(8):. PubMed ID: 35892415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task switching and bilingualism in young and older adults: A behavioral and electrophysiological investigation.
    López Zunini RA; Morrison C; Kousaie S; Taler V
    Neuropsychologia; 2019 Oct; 133():107186. PubMed ID: 31513809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-switching costs have distinct phase-locked and nonphase-locked EEG power effects.
    McKewen M; Cooper PS; Wong ASW; Michie PT; Sauseng P; Karayanidis F
    Psychophysiology; 2020 May; 57(5):e13533. PubMed ID: 31994736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intertrial RT variability affects level of target-related interference in cued task switching.
    Provost A; Jamadar S; Heathcote A; Brown SD; Karayanidis F
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28776698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of Proactive and Reactive Cognitive Control in Individuals with Schizotypy: An Event-Related Potential Study.
    Jia LX; Qin XJ; Cui JF; Shi HS; Ye JY; Yang TX; Wang Y; Chan RCK
    J Int Neuropsychol Soc; 2021 Nov; 27(10):981-991. PubMed ID: 33509315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological Correlates of Proactive Control and Binding Processes during Task Switching in Tourette Syndrome.
    Wehmeyer L; Schüller CB; Gruendler TOJ; Huys D; Kuhn J; Ullsperger M; Visser-Vandewalle V; Andrade P; Baldermann JC; Schüller T
    eNeuro; 2023 Apr; 10(4):. PubMed ID: 37019631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of trait impulsivity on proactive and reactive interference control.
    Xiang L; Chen Y; Chen A; Zhang F; Xu F; Wang B
    Brain Res; 2018 Feb; 1680():93-104. PubMed ID: 29247631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Processes of Proactive and Reactive Controls Modulated by Motor-Skill Experiences.
    Yu Q; Chau BKH; Lam BYH; Wong AWK; Peng J; Chan CCH
    Front Hum Neurosci; 2019; 13():404. PubMed ID: 31798435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural mechanisms underlying the cost of task switching: an ERP study.
    Li L; Wang M; Zhao QJ; Fogelson N
    PLoS One; 2012; 7(7):e42233. PubMed ID: 22860090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in neural recruitment for cognitive control.
    Kopp B; Lange F; Howe J; Wessel K
    Brain Cogn; 2014 Mar; 85():209-19. PubMed ID: 24434022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Account of the Effect of Switch Probability on Switch and Mixing Costs: An ERP Study in a Cued Task-switching Paradigm.
    Wenwen C; Yang Y; Cui L; Chen Y; Zhang W; Zhang X; Zhou S
    Cogn Behav Neurol; 2022 Dec; 35(4):230-246. PubMed ID: 36136039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ERPs dissociate proactive and reactive control: evidence from a task-switching paradigm with informative and uninformative cues.
    Czernochowski D
    Cogn Affect Behav Neurosci; 2015 Mar; 15(1):117-31. PubMed ID: 24925001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An information theory account of late frontoparietal ERP positivities in cognitive control.
    Barceló F; Cooper PS
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28295342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immediate versus delayed control demands elicit distinct mechanisms for instantiating proactive control.
    Janowich JR; Cavanagh JF
    Cogn Affect Behav Neurosci; 2019 Aug; 19(4):910-926. PubMed ID: 30607833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural markers of proactive and reactive cognitive control are altered during walking: A Mobile Brain-Body Imaging (MoBI) study.
    Richardson DP; Foxe JJ; Mazurek KA; Abraham N; Freedman EG
    Neuroimage; 2022 Feb; 247():118853. PubMed ID: 34954331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.