These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
887 related articles for article (PubMed ID: 36774895)
1. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies. Baran Y; Doğan B Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895 [TBL] [Abstract][Full Text] [Related]
2. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
3. On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data. Ng GYL; Tan SC; Ong CS PLoS One; 2023; 18(10):e0292961. PubMed ID: 37856458 [TBL] [Abstract][Full Text] [Related]
4. A clustering method for small scRNA-seq data based on subspace and weighted distance. Ning Z; Dai Z; Zhang H; Chen Y; Yuan Z PeerJ; 2023; 11():e14706. PubMed ID: 36710872 [TBL] [Abstract][Full Text] [Related]
5. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling. Song D; Li K; Hemminger Z; Wollman R; Li JJ Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925 [TBL] [Abstract][Full Text] [Related]
6. SPANN: annotating single-cell resolution spatial transcriptome data with scRNA-seq data. Yuan M; Wan H; Wang Z; Guo Q; Deng M Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38279647 [TBL] [Abstract][Full Text] [Related]
7. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988 [TBL] [Abstract][Full Text] [Related]
8. FlowGrid enables fast clustering of very large single-cell RNA-seq data. Fang X; Ho JWK Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014 [TBL] [Abstract][Full Text] [Related]
9. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data. Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377 [TBL] [Abstract][Full Text] [Related]
11. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related]
12. A Hands-On Guide to Generate Spatial Gene Expression Profiles by Integrating scRNA-seq and 3D-Reconstructed Microscope-Based Plant Structures. Neumann M; Muino JM Methods Mol Biol; 2023; 2686():567-580. PubMed ID: 37540378 [TBL] [Abstract][Full Text] [Related]
13. Integration tools for scRNA-seq data and spatial transcriptomics sequencing data. Yan C; Zhu Y; Chen M; Yang K; Cui F; Zou Q; Zhang Z Brief Funct Genomics; 2024 Jul; 23(4):295-302. PubMed ID: 38267084 [TBL] [Abstract][Full Text] [Related]
14. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data. Gan Y; Chen Y; Xu G; Guo W; Zou G Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714 [TBL] [Abstract][Full Text] [Related]
15. SoCube: an innovative end-to-end doublet detection algorithm for analyzing scRNA-seq data. Zhang H; Lu M; Lin G; Zheng L; Zhang W; Xu Z; Zhu F Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36941114 [TBL] [Abstract][Full Text] [Related]
16. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data. Wan H; Chen L; Deng M Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761 [TBL] [Abstract][Full Text] [Related]
17. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones. Müller S; Cho A; Liu SJ; Lim DA; Diaz A Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414 [TBL] [Abstract][Full Text] [Related]
18. Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data. Wu W; Ma X IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):566-575. PubMed ID: 35316190 [TBL] [Abstract][Full Text] [Related]
20. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features. Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]