These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 36774991)
1. Is the new angel better than the old devil? Challenges and opportunities in CD47- SIRPα-based cancer therapy. Olaoba OT; Ayinde KS; Lateef OM; Akintubosun MO; Lawal KA; Adelusi TI Crit Rev Oncol Hematol; 2023 Apr; 184():103939. PubMed ID: 36774991 [TBL] [Abstract][Full Text] [Related]
2. The CD47-SIRPα axis is a promising target for cancer immunotherapies. Hao Y; Zhou X; Li Y; Li B; Cheng L Int Immunopharmacol; 2023 Jul; 120():110255. PubMed ID: 37187126 [TBL] [Abstract][Full Text] [Related]
3. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Matlung HL; Szilagyi K; Barclay NA; van den Berg TK Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703 [TBL] [Abstract][Full Text] [Related]
4. CD47/SIRPα axis: bridging innate and adaptive immunity. van Duijn A; Van der Burg SH; Scheeren FA J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35831032 [TBL] [Abstract][Full Text] [Related]
5. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy. Li Z; Li Y; Gao J; Fu Y; Hua P; Jing Y; Cai M; Wang H; Tong T Life Sci; 2021 May; 273():119150. PubMed ID: 33662426 [TBL] [Abstract][Full Text] [Related]
6. Understanding the regulation of "Don't Eat-Me" signals by inflammatory signaling pathways in the tumor microenvironment for more effective therapy. Karizak AZ; Salmasi Z; Gheibihayat SM; Asadi M; Ghasemi Y; Tajbakhsh A; Savardashtaki A J Cancer Res Clin Oncol; 2023 Jan; 149(1):511-529. PubMed ID: 36342520 [TBL] [Abstract][Full Text] [Related]
7. SIRPα-Fc fusion protein IMM01 exhibits dual anti-tumor activities by targeting CD47/SIRPα signal pathway via blocking the "don't eat me" signal and activating the "eat me" signal. Yu J; Li S; Chen D; Liu D; Guo H; Yang C; Zhang W; Zhang L; Zhao G; Tu X; Peng L; Liu S; Bai X; Song Y; Jiang Z; Zhang R; Tian W J Hematol Oncol; 2022 Nov; 15(1):167. PubMed ID: 36384978 [TBL] [Abstract][Full Text] [Related]
8. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Koh E; Lee EJ; Nam GH; Hong Y; Cho E; Yang Y; Kim IS Biomaterials; 2017 Mar; 121():121-129. PubMed ID: 28086180 [TBL] [Abstract][Full Text] [Related]
9. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Logtenberg MEW; Jansen JHM; Raaben M; Toebes M; Franke K; Brandsma AM; Matlung HL; Fauster A; Gomez-Eerland R; Bakker NAM; van der Schot S; Marijt KA; Verdoes M; Haanen JBAG; van den Berg JH; Neefjes J; van den Berg TK; Brummelkamp TR; Leusen JHW; Scheeren FA; Schumacher TN Nat Med; 2019 Apr; 25(4):612-619. PubMed ID: 30833751 [TBL] [Abstract][Full Text] [Related]
10. CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. Wang H; Sun Y; Zhou X; Chen C; Jiao L; Li W; Gou S; Li Y; Du J; Chen G; Zhai W; Wu Y; Qi Y; Gao Y J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33020240 [TBL] [Abstract][Full Text] [Related]
11. Discovery of a novel small molecule as CD47/SIRPα and PD-1/PD-L1 dual inhibitor for cancer immunotherapy. Jin S; Wang H; Li Y; Yang J; Li B; Shi P; Zhang X; Zhou X; Zhou X; Niu X; Wu M; Wu Y; Zhai W; Qi Y; Gao Y; Zhao W Cell Commun Signal; 2024 Mar; 22(1):173. PubMed ID: 38462636 [TBL] [Abstract][Full Text] [Related]
12. Targeting HDAC6 improves anti-CD47 immunotherapy. Gracia-Hernandez M; Yende AS; Gajendran N; Alahmadi Z; Li X; Munoz Z; Tan K; Noonepalle S; Shibata M; Villagra A J Exp Clin Cancer Res; 2024 Feb; 43(1):60. PubMed ID: 38414061 [TBL] [Abstract][Full Text] [Related]
13. The development of small-molecule inhibitors targeting CD47. Yu WB; Ye ZH; Chen X; Shi JJ; Lu JJ Drug Discov Today; 2021 Feb; 26(2):561-568. PubMed ID: 33197622 [TBL] [Abstract][Full Text] [Related]
14. "Velcro" engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis. Ho CC; Guo N; Sockolosky JT; Ring AM; Weiskopf K; Özkan E; Mori Y; Weissman IL; Garcia KC J Biol Chem; 2015 May; 290(20):12650-63. PubMed ID: 25837251 [TBL] [Abstract][Full Text] [Related]
15. Deciphering the role of CD47 in cancer immunotherapy. Liu Y; Weng L; Wang Y; Zhang J; Wu Q; Zhao P; Shi Y; Wang P; Fang L J Adv Res; 2024 Sep; 63():129-158. PubMed ID: 39167629 [TBL] [Abstract][Full Text] [Related]
16. Recent Advances of Tumor Therapy Based on the CD47-SIRPα Axis. Wang Y; Zhao C; Liu Y; Wang C; Jiang H; Hu Y; Wu J Mol Pharm; 2022 May; 19(5):1273-1293. PubMed ID: 35436123 [TBL] [Abstract][Full Text] [Related]
17. CD47 is a novel potent immunotherapy target in human malignancies: current studies and future promises. Tong B; Wang M Future Oncol; 2018 Sep; 14(21):2179-2188. PubMed ID: 29667847 [TBL] [Abstract][Full Text] [Related]
18. Blockade of CD47 or SIRPα: a new cancer immunotherapy. Murata Y; Saito Y; Kotani T; Matozaki T Expert Opin Ther Targets; 2020 Oct; 24(10):945-951. PubMed ID: 32799682 [TBL] [Abstract][Full Text] [Related]
19. Is CD47 an innate immune checkpoint for tumor evasion? Liu X; Kwon H; Li Z; Fu YX J Hematol Oncol; 2017 Jan; 10(1):12. PubMed ID: 28077173 [TBL] [Abstract][Full Text] [Related]
20. The regulation of CD47-SIRPα signaling axis by microRNAs in combination with conventional cytotoxic drugs together with the help of nano-delivery: a choice for therapy? Beizavi Z; Gheibihayat SM; Moghadasian H; Zare H; Yeganeh BS; Askari H; Vakili S; Tajbakhsh A; Savardashtaki A Mol Biol Rep; 2021 Jul; 48(7):5707-5722. PubMed ID: 34275112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]