These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 36775055)

  • 1. Identifying RNA Modifications by Direct RNA Sequencing Reveals Complexity of Epitranscriptomic Dynamics in Rice.
    Yu F; Qi H; Gao L; Luo S; Njeri Damaris R; Ke Y; Wu W; Yang P
    Genomics Proteomics Bioinformatics; 2023 Aug; 21(4):788-804. PubMed ID: 36775055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies.
    Reddy ASN; Huang J; Syed NH; Ben-Hur A; Dong S; Gu L
    Biochem Soc Trans; 2020 Dec; 48(6):2399-2414. PubMed ID: 33196096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advances in mapping analysis of ribonucleic acid modifications through sequencing].
    Xiong J; Feng T; Yuan BF
    Se Pu; 2024 Jul; 42(7):632-645. PubMed ID: 38966972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying m
    Zhang M; Xiao Y; Jiang Z; Yi C
    Acc Chem Res; 2023 Nov; 56(21):2980-2991. PubMed ID: 37851547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer learning enables identification of multiple types of RNA modifications using nanopore direct RNA sequencing.
    Wu Y; Shao W; Yan M; Wang Y; Xu P; Huang G; Li X; Gregory BD; Yang J; Wang H; Yu X
    Nat Commun; 2024 May; 15(1):4049. PubMed ID: 38744925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct full-length RNA sequencing reveals unexpected transcriptome complexity during
    Li R; Ren X; Ding Q; Bi Y; Xie D; Zhao Z
    Genome Res; 2020 Feb; 30(2):287-298. PubMed ID: 32024662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice.
    Lu T; Zhu C; Lu G; Guo Y; Zhou Y; Zhang Z; Zhao Y; Li W; Lu Y; Tang W; Feng Q; Han B
    BMC Genomics; 2012 Dec; 13():721. PubMed ID: 23259405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing viral epitranscriptomes using nanopore direct RNA sequencing.
    Hong A; Kim D; Kim VN; Chang H
    J Microbiol; 2022 Sep; 60(9):867-876. PubMed ID: 36001233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MeRIP-Seq for Identifying Stress-Responsive Transcriptome-Wide m
    Govindan G; Sunkar R
    Methods Mol Biol; 2024; 2832():47-55. PubMed ID: 38869786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome-wide N⁶-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification.
    Li Y; Wang X; Li C; Hu S; Yu J; Song S
    RNA Biol; 2014; 11(9):1180-8. PubMed ID: 25483034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of bacterial transcriptome and epitranscriptome using nanopore direct RNA sequencing.
    Tan L; Guo Z; Shao Y; Ye L; Wang M; Deng X; Chen S; Li R
    Nucleic Acids Res; 2024 Aug; 52(15):8746-8762. PubMed ID: 39011882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcript Isoform-Specific Estimation of Poly(A) Tail Length by Nanopore Sequencing of Native RNA.
    Niazi AM; Krause M; Valen E
    Methods Mol Biol; 2021; 2284():543-567. PubMed ID: 33835463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Analysis of HIV mRNA m
    Honeycutt E; Kizito F; Karn J; Sweet T
    Methods Mol Biol; 2024; 2807():209-227. PubMed ID: 38743231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Messenger RNA Modifications in Plants.
    Shen L; Liang Z; Wong CE; Yu H
    Trends Plant Sci; 2019 Apr; 24(4):328-341. PubMed ID: 30745055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanopore Direct RNA Sequencing Reveals the Short-Term Salt Stress Response in Maize Roots.
    He S; Wang H; Lv M; Li S; Song J; Wang R; Jiang S; Jiang L; Zhang S; Li X
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Sequencing of RNA and RNA Modification Identification Using Nanopore.
    Wongsurawat T; Jenjaroenpun P; Nookaew I
    Methods Mol Biol; 2022; 2477():71-77. PubMed ID: 35524112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome annotation of 17 porcine tissues using nanopore sequencing technology.
    Li J; Guan D; Halstead MM; Islas-Trejo AD; Goszczynski DE; Ernst CW; Cheng H; Ross P; Zhou H
    Anim Genet; 2023 Feb; 54(1):35-44. PubMed ID: 36385508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive gene profiling of the metabolic landscape of humanized livers in mice.
    Jiang C; Li P; Ma Y; Yoneda N; Kawai K; Uehara S; Ohnishi Y; Suemizu H; Cao H
    J Hepatol; 2024 Apr; 80(4):622-633. PubMed ID: 38049085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the epitranscriptome by native RNA sequencing.
    Begik O; Mattick JS; Novoa EM
    RNA; 2022 Nov; 28(11):1430-1439. PubMed ID: 36104106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore.
    Pratanwanich PN; Yao F; Chen Y; Koh CWQ; Wan YK; Hendra C; Poon P; Goh YT; Yap PML; Chooi JY; Chng WJ; Ng SB; Thiery A; Goh WSS; Göke J
    Nat Biotechnol; 2021 Nov; 39(11):1394-1402. PubMed ID: 34282325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.