BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36775127)

  • 21. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.
    Gannavaram S; Sirin S; Sherman W; Gadda G
    Biochemistry; 2014 Oct; 53(41):6574-83. PubMed ID: 25243743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of
    Glasser NR; Wang BX; Hoy JA; Newman DK
    J Biol Chem; 2017 Mar; 292(13):5593-5607. PubMed ID: 28174304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase. Kinetic evaluation of binding and activation parameters controlling the catalytic cycles of unbranched, acyclic secondary alcohols and ketones as substrates of the native and active-site-specific Co(II)-substituted enzyme.
    Adolph HW; Maurer P; Schneider-Bernlöhr H; Sartorius C; Zeppezauer M
    Eur J Biochem; 1991 Nov; 201(3):615-25. PubMed ID: 1935957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the enzymatic formation, chemical features, and biological role of the flavin-N5-oxide.
    Saleem-Batcha R; Teufel R
    Curr Opin Chem Biol; 2018 Dec; 47():47-53. PubMed ID: 30165331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An internal equilibrium preorganizes the enzyme-substrate complex for hydride tunneling in choline oxidase.
    Fan F; Gadda G
    Biochemistry; 2007 May; 46(21):6402-8. PubMed ID: 17472346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study of N-hydroxylating flavoprotein monooxygenases reveals differences in kinetics and cofactor binding.
    Ernst S; Mährlein A; Ritzmann NH; Drees SL; Fetzner S
    FEBS J; 2022 Sep; 289(18):5637-5655. PubMed ID: 35313078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Definition of the redox states of cobalt-precorrinoids: investigation of the substrate and redox specificity of CbiL from Salmonella typhimurium.
    Spencer P; Stolowich NJ; Sumner LW; Scott AI
    Biochemistry; 1998 Oct; 37(42):14917-27. PubMed ID: 9778368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and characterization of two pathogenic mutations in human electron transfer flavoprotein.
    Salazar D; Zhang L; deGala GD; Frerman FE
    J Biol Chem; 1997 Oct; 272(42):26425-33. PubMed ID: 9334218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted Mutation of a Non-catalytic Gating Residue Increases the Rate of
    Quaye JA; Ouedraogo D; Gadda G
    J Agric Food Chem; 2023 Nov; 71(45):17343-52. PubMed ID: 37933126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cooperativity in the mechanism of malate dehydrogenase.
    Zimmerle CT; Alter GM
    Biochemistry; 1993 Nov; 32(47):12743-8. PubMed ID: 8251495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and kinetic bases for the metal preference of the M18 aminopeptidase from Pseudomonas aeruginosa.
    Nguyen DD; Pandian R; Kim D; Ha SC; Yoon HJ; Kim KS; Yun KH; Kim JH; Kim KK
    Biochem Biophys Res Commun; 2014 Apr; 447(1):101-7. PubMed ID: 24704201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Closing the gap: yeast electron-transferring flavoprotein links the oxidation of d-lactate and d-α-hydroxyglutarate to energy production via the respiratory chain.
    Toplak M; Brunner J; Tabib CR; Macheroux P
    FEBS J; 2019 Sep; 286(18):3611-3628. PubMed ID: 31081204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans.
    Sedláček V; Klumpler T; Marek J; Kučera I
    PLoS One; 2014; 9(5):e96262. PubMed ID: 24817153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of the Flavoprotein d-6-Hydroxynicotine Oxidase: Substrate Specificity, pH and Solvent Isotope Effects, and Roles of Key Active-Site Residues.
    Fitzpatrick PF; Dougherty V; Subedi B; Quilantan J; Hinck CS; Lujan AI; Tormos JR
    Biochemistry; 2019 May; 58(21):2534-2541. PubMed ID: 31046245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic methods for the study of the enzyme systems of beta-oxidation.
    Reinsch J; Rojas C; McFarland JT
    Arch Biochem Biophys; 1983 Nov; 227(1):21-30. PubMed ID: 6639077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and properties of malate dehydrogenase from Pseudomonas testosteroni.
    You KS; Kaplan NO
    J Bacteriol; 1975 Aug; 123(2):704-16. PubMed ID: 238957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism.
    Meneely KM; Lamb AL
    Biochemistry; 2007 Oct; 46(42):11930-7. PubMed ID: 17900176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.