These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36775624)

  • 1. [Effects of pH, Calcium, and Phosphate on the Solubility of Arsenic in Paddy Soil Based on Surface Complexation Modeling].
    Deng YX; Weng LP; Zhu GF; Li YT
    Huan Jing Ke Xue; 2023 Feb; 44(2):1012-1020. PubMed ID: 36775624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-dependent effects of phosphate on arsenic speciation in paddy soils.
    Deng Y; Weng L; Li Y; Chen Y; Ma J
    Environ Pollut; 2020 Sep; 264():114783. PubMed ID: 32428817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling.
    Weng L; Vega FA; Van Riemsdijk WH
    Environ Sci Technol; 2011 Oct; 45(19):8420-8. PubMed ID: 21861529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding major NOM properties controlling its interactions with phosphorus and arsenic at goethite-water interface.
    Deng Y; Weng L; Li Y; Ma J; Chen Y
    Water Res; 2019 Jun; 157():372-380. PubMed ID: 30974286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of calcium and phosphorus on ammonium and nitrate nitrogen adsorption onto iron (hydr)oxides surfaces: CD-MUSIC model and DFT computation.
    Jia M; Ma J; Zhou Q; Liu L; Jie X; Liu H; Qin S; Li C; Sui F; Fu H; Xie H; Wang L; Zhao P
    Chemosphere; 2024 Jun; 357():142070. PubMed ID: 38641297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol.
    Jiang J; Dai Z; Sun R; Zhao Z; Dong Y; Hong Z; Xu R
    Chemosphere; 2017 Jul; 179():232-241. PubMed ID: 28371707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pH variations caused by redox reactions and pH buffering capacity on Cd(II) speciation in paddy soils during submerging/draining alternation.
    Lu HL; Li KW; Nkoh JN; He X; Xu RK; Qian W; Shi RY; Hong ZN
    Ecotoxicol Environ Saf; 2022 Apr; 234():113409. PubMed ID: 35286955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpreting competitive adsorption of arsenate and phosphate on nanosized iron (hydr)oxides: effects of pH and surface loading.
    Han J; Ro HM
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28572-28582. PubMed ID: 30091077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling.
    Cui Y; Weng L
    Environ Sci Technol; 2013 Jul; 47(13):7269-76. PubMed ID: 23751067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NOM-mineral interaction: Significance for speciation of cations and anions.
    Li J; Weng L; Deng Y; Ma J; Chen Y; Li Y
    Sci Total Environ; 2022 May; 820():153259. PubMed ID: 35065113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness and potential risk of CaO application in Cd-contaminated paddy soil.
    Du Y; Wang X; Ji X; Zhang Z; Saha UK; Xie W; Xie Y; Wu J; Peng B; Tan C
    Chemosphere; 2018 Aug; 204():130-139. PubMed ID: 29655105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO
    Li B; Zhou S; Wei D; Long J; Peng L; Tie B; Williams PN; Lei M
    Sci Total Environ; 2019 Feb; 650(Pt 1):546-556. PubMed ID: 30205344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus dynamics in Swedish agricultural soils as influenced by fertilization and mineralogical properties: Insights gained from batch experiments and XANES spectroscopy.
    Eriksson AK; Hesterberg D; Klysubun W; Gustafsson JP
    Sci Total Environ; 2016 Oct; 566-567():1410-1419. PubMed ID: 27312272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of Iron on the Release of Arsenic in Flooded Paddy Soils].
    Wang X; Zhong SX; Chen ZL; He HF; Dong JH; Chen XL
    Huan Jing Ke Xue; 2018 Jun; 39(6):2911-2918. PubMed ID: 29965650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-Phase Speciation and Solubility of Phosphorus in an Acid Sulfate Paddy Soil during Soil Reduction and Reoxidation as Affected by Oil Palm Ash and Biochar.
    Wisawapipat W; Charoensri K; Runglerttrakoolchai J
    J Agric Food Chem; 2017 Feb; 65(4):704-710. PubMed ID: 28060497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phosphate on amorphous iron mineral generation and arsenic behavior in paddy soils.
    Ji Y; Luo W; Lu G; Fan C; Tao X; Ye H; Xie Y; Shi Z; Yi X; Dang Z
    Sci Total Environ; 2019 Mar; 657():644-656. PubMed ID: 30677931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Simultaneous Immobilization of Arsenic, Lead, and Cadmium in Paddy Soils Using Two Iron-based Materials].
    Yuan F; Tang XJ; Wu JZ; Zhao KL; Ye ZQ
    Huan Jing Ke Xue; 2021 Jul; 42(7):3535-3548. PubMed ID: 34212680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modes of selenium occurrence and LCD modeling of selenite desorption/adsorption in soils around the selenium-rich core, Ziyang County, China.
    Zhang Y; Wu S; Zheng H; Weng L; Hu Y; Ma H
    Environ Sci Pollut Res Int; 2018 May; 25(15):14521-14531. PubMed ID: 29527646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.