BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 36775855)

  • 1. Impacts of microgravity on amino acid metabolism during spaceflight.
    Dickerson BL; Sowinski R; Kreider RB; Wu G
    Exp Biol Med (Maywood); 2023 May; 248(5):380-393. PubMed ID: 36775855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurosurgery and spinal adaptations in spaceflight: A literature review.
    Lazzari ZT; Aria KM; Menger R
    Clin Neurol Neurosurg; 2021 Aug; 207():106755. PubMed ID: 34126454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle synergies of multidirectional postural control in astronauts on Earth after a long-term stay in space.
    Hagio S; Ishihara A; Terada M; Tanabe H; Kibushi B; Higashibata A; Yamada S; Furukawa S; Mukai C; Ishioka N; Kouzaki M
    J Neurophysiol; 2022 May; 127(5):1230-1239. PubMed ID: 35353615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Microgravity on Immunological States.
    Hicks J; Olson M; Mitchell C; Juran CM; Paul AM
    Immunohorizons; 2023 Oct; 7(10):670-682. PubMed ID: 37855736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of microgravity on bone in humans.
    Grimm D; Grosse J; Wehland M; Mann V; Reseland JE; Sundaresan A; Corydon TJ
    Bone; 2016 Jun; 87():44-56. PubMed ID: 27032715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drugs in space: Pharmacokinetics and pharmacodynamics in astronauts.
    Kast J; Yu Y; Seubert CN; Wotring VE; Derendorf H
    Eur J Pharm Sci; 2017 Nov; 109S():S2-S8. PubMed ID: 28533143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of microgravity and other space stressors in immunosuppression and viral reactivation with potential nervous system involvement.
    Mann V; Sundaresan A; Mehta SK; Crucian B; Doursout MF; Devakottai S
    Neurol India; 2019; 67(Supplement):S198-S203. PubMed ID: 31134910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neurology of space flight; How does space flight effect the human nervous system?
    Gupta U; Baig S; Majid A; Bell SM
    Life Sci Space Res (Amst); 2023 Feb; 36():105-115. PubMed ID: 36682819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes.
    Willey JS; Britten RA; Blaber E; Tahimic CGT; Chancellor J; Mortreux M; Sanford LD; Kubik AJ; Delp MD; Mao XW
    J Environ Sci Health C Toxicol Carcinog; 2021; 39(2):129-179. PubMed ID: 33902391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spaceflight-induced bone loss: is there an osteoporosis risk?
    Sibonga JD
    Curr Osteoporos Rep; 2013 Jun; 11(2):92-8. PubMed ID: 23564190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astronaut-induced disturbances in microgravity.
    Newman DJ; Tryfonidis M; van Schoor MC
    J Spacecr Rockets; 1997; 34(2):252-4. PubMed ID: 11540128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spaceflight-Associated Brain White Matter Microstructural Changes and Intracranial Fluid Redistribution.
    Lee JK; Koppelmans V; Riascos RF; Hasan KM; Pasternak O; Mulavara AP; Bloomberg JJ; Seidler RD
    JAMA Neurol; 2019 Apr; 76(4):412-419. PubMed ID: 30673793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomic neural functions in space.
    Mano T
    Curr Pharm Biotechnol; 2005 Aug; 6(4):319-24. PubMed ID: 16101470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction.
    Hughes L; Hackney KJ; Patterson SD
    Aerosp Med Hum Perform; 2022 Jan; 93(1):32-45. PubMed ID: 35063054
    [No Abstract]   [Full Text] [Related]  

  • 15. The role of physiotherapy in the European Space Agency strategy for preparation and reconditioning of astronauts before and after long duration space flight.
    Lambrecht G; Petersen N; Weerts G; Pruett C; Evetts S; Stokes M; Hides J
    Musculoskelet Sci Pract; 2017 Jan; 27 Suppl 1():S15-S22. PubMed ID: 28173928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiovascular changes under the microgravity environment and the gut microbiome.
    Siddiqui R; Qaisar R; Al-Dahash K; Altelly AH; Elmoselhi AB; Khan NA
    Life Sci Space Res (Amst); 2024 Feb; 40():89-96. PubMed ID: 38245353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astronaut-induced disturbances to the microgravity environment of the Mir Space Station.
    Newman DJ; Amir AR; Beck SM
    J Spacecr Rockets; 2001; 38(4):578-83. PubMed ID: 12033220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutrophil-to-Lymphocyte Ratio: A Biomarker to Monitor the Immune Status of Astronauts.
    Paul AM; Mhatre SD; Cekanaviciute E; Schreurs AS; Tahimic CGT; Globus RK; Anand S; Crucian BE; Bhattacharya S
    Front Immunol; 2020; 11():564950. PubMed ID: 33224136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infection prevention and control during prolonged human space travel.
    Mermel LA
    Clin Infect Dis; 2013 Jan; 56(1):123-30. PubMed ID: 23051761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment.
    Deng C; Wang P; Zhang X; Wang Y
    Life Sci Space Res (Amst); 2015 Apr; 5():1-5. PubMed ID: 25821722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.