These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36775943)

  • 21. Metal-Organic-Framework-Based Catalysts for Photoreduction of CO
    Li R; Zhang W; Zhou K
    Adv Mater; 2018 Aug; 30(35):e1705512. PubMed ID: 29894012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Progress in the Photocatalytic Reduction of Carbon Dioxide.
    Lingampalli SR; Ayyub MM; Rao CNR
    ACS Omega; 2017 Jun; 2(6):2740-2748. PubMed ID: 31457612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lattice Engineering on Metal Cocatalysts for Enhanced Photocatalytic Reduction of CO
    Zhao L; Ye F; Wang D; Cai X; Meng C; Xie H; Zhang J; Bai S
    ChemSusChem; 2018 Oct; 11(19):3524-3533. PubMed ID: 30030919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photocatalytic CO
    Hornberger LS; Adams F
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advances in Quantum Dots for Photocatalytic CO
    Park YH; Murali G; Modigunta JKR; In I; In SI
    Front Chem; 2021; 9():734108. PubMed ID: 34660530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of hybrid photocatalysts constructed with a metal complex and graphitic carbon nitride for visible-light-driven CO
    Kuriki R; Maeda K
    Phys Chem Chem Phys; 2017 Feb; 19(7):4938-4950. PubMed ID: 28164192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bismuth-Based Photocatalysts for Solar Photocatalytic Carbon Dioxide Conversion.
    Ye L; Deng Y; Wang L; Xie H; Su F
    ChemSusChem; 2019 Aug; 12(16):3671-3701. PubMed ID: 31107595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorus-Doped Graphitic Carbon Nitride Nanotubes with Amino-rich Surface for Efficient CO
    Liu B; Ye L; Wang R; Yang J; Zhang Y; Guan R; Tian L; Chen X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4001-4009. PubMed ID: 29278318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photocatalytic hydrogen evolution based on carbon nitride and organic semiconductors.
    Zhang H; Liu J; Jiang L
    Nanotechnology; 2022 May; 33(32):. PubMed ID: 35447618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now?
    Zhang W; Mohamed AR; Ong WJ
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22894-22915. PubMed ID: 32009290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Covalent Organic Framework-Semiconductor-Based Heterostructures for Photocatalytic Applications.
    Chen K; Cai A; Li TT
    ChemSusChem; 2023 May; 16(10):e202300021. PubMed ID: 36799094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-situ growth of metal phosphide-black phosphorus heterojunction for highly selective and efficient photocatalytic carbon dioxide conversion.
    Xu Y; Zhang W; Zhou G; Jin M; Li X
    J Colloid Interface Sci; 2022 Jun; 616():641-648. PubMed ID: 35240442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Mini Review on Bismuth-Based Z-Scheme Photocatalysts.
    Li R; Chen H; Xiong J; Xu X; Cheng J; Liu X; Liu G
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33182570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications.
    Ahmad I; Zou Y; Yan J; Liu Y; Shukrullah S; Naz MY; Hussain H; Khan WQ; Khalid NR
    Adv Colloid Interface Sci; 2023 Jan; 311():102830. PubMed ID: 36592501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research progress in metal sulfides for photocatalysis: From activity to stability.
    Zhang S; Ou X; Xiang Q; Carabineiro SAC; Fan J; Lv K
    Chemosphere; 2022 Sep; 303(Pt 2):135085. PubMed ID: 35618060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly of TiO
    Zou YH; Wang HN; Meng X; Sun HX; Zhou ZY
    Nanoscale Adv; 2021 Mar; 3(5):1455-1463. PubMed ID: 36132871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging Stacked Photocatalyst Design Enables Spatially Separated Ni(OH)
    Liu Q; Wang S; Mo W; Zheng Y; Xu Y; Yang G; Zhong S; Ma J; Liu D; Bai S
    Small; 2022 Mar; 18(9):e2104681. PubMed ID: 34914177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defect Engineering of Photocatalysts towards Elevated CO
    Shen M; Zhang L; Shi J
    ChemSusChem; 2021 Jul; 14(13):2635-2654. PubMed ID: 33872463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photons to Formate-A Review on Photocatalytic Reduction of CO
    Pan H; Heagy MD
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33291520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of zirconium-based metal-organic framework with CdS for enhanced photocatalytic conversion of CO
    Wang HN; Zou YH; Fu YM; Meng X; Xue L; Sun HX; Su ZM
    Nanoscale; 2021 Oct; 13(40):16977-16985. PubMed ID: 34610078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.