BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 3677619)

  • 1. Computer simulation of human mitral valve mechanics and motion.
    Miller GE; Marcotte H
    Comput Biol Med; 1987; 17(5):305-19. PubMed ID: 3677619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mitral complex. Interaction of the anatomy, physiology, and pathology of the mitral annulus, mitral valve leaflets, chordae tendineae, and papillary muscles.
    Silverman ME; Hurst JW
    Am Heart J; 1968 Sep; 76(3):399-418. PubMed ID: 4952735
    [No Abstract]   [Full Text] [Related]  

  • 3. Contemporary insights into the functional anatomy of the mitral valve.
    Silbiger JJ; Bazaz R
    Am Heart J; 2009 Dec; 158(6):887-95. PubMed ID: 19958853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional anatomy of the normal mitral apparatus: a transthoracic, two-dimensional echocardiographic study.
    Babburi H; Oommen R; Brofferio A; Ilercil A; Frater R; Shirani J
    J Heart Valve Dis; 2003 Mar; 12(2):180-5. PubMed ID: 12701790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-linear fluid-coupled computational model of the mitral valve.
    Einstein DR; Kunzelman KS; Reinhall PG; Nicosia MA; Cochran RP
    J Heart Valve Dis; 2005 May; 14(3):376-85. PubMed ID: 15974533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution.
    Prot V; Haaverstad R; Skallerud B
    Biomech Model Mechanobiol; 2009 Feb; 8(1):43-55. PubMed ID: 18193309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valvular-ventricular interaction: importance of the mitral apparatus in canine left ventricular systolic performance.
    Hansen DE; Cahill PD; DeCampli WM; Harrison DC; Derby GC; Mitchell RS; Miller DC
    Circulation; 1986 Jun; 73(6):1310-20. PubMed ID: 3698258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of the mitral valve.
    Kunzelman KS; Cochran RP; Chuong C; Ring WS; Verrier ED; Eberhart RD
    J Heart Valve Dis; 1993 May; 2(3):326-40. PubMed ID: 8269128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the mitral subvalvular apparatus in left ventricular systolic mechanics.
    Sarris GE; Miller DC
    Semin Thorac Cardiovasc Surg; 1989 Oct; 1(2):133-43. PubMed ID: 2488417
    [No Abstract]   [Full Text] [Related]  

  • 10. Geometric distribution of chordae tendineae: an important anatomic feature in mitral valve function.
    He S; Weston MW; Lemmon J; Jensen M; Levine RA; Yoganathan AP
    J Heart Valve Dis; 2000 Jul; 9(4):495-501; discussion 502-3. PubMed ID: 10947041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid-structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure.
    Toma M; Einstein DR; Bloodworth CH; Cochran RP; Yoganathan AP; Kunzelman KS
    Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27342229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods of design of leaflet valvular prostheses. I. Stresses in the mitral valve leaflets in health and disease.
    Clark RE; Sutera SP
    J Thorac Cardiovasc Surg; 1973 Jun; 65(6):890-6. PubMed ID: 4704240
    [No Abstract]   [Full Text] [Related]  

  • 13. Ideal site for ventricular anchoring of artificial chordae in mitral regurgitation.
    Weber A; Hurni S; Vandenberghe S; Wahl A; Aymard T; Vogel R; Carrel T
    J Thorac Cardiovasc Surg; 2012 Apr; 143(4 Suppl):S78-81. PubMed ID: 22035963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative mechanical, morphological, and microstructural characterization of porcine mitral and tricuspid leaflets and chordae tendineae.
    Pokutta-Paskaleva A; Sulejmani F; DelRocini M; Sun W
    Acta Biomater; 2019 Feb; 85():241-252. PubMed ID: 30579963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics of Porcine Heart Valves' Strut Chordae Tendineae Investigated as a Leaflet-Chordae-Papillary Muscle Entity.
    Ross CJ; Laurence DW; Hsu MC; Baumwart R; Zhao YD; Mir A; Burkhart HM; Holzapfel GA; Wu Y; Lee CH
    Ann Biomed Eng; 2020 May; 48(5):1463-1474. PubMed ID: 32006267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of the mitral valve strut chordae insertion region.
    Padala M; Sacks MS; Liou SW; Balachandran K; He Z; Yoganathan AP
    J Biomech Eng; 2010 Aug; 132(8):081004. PubMed ID: 20670053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall: three-dimensional force vector measurement system.
    Jensen MO; Fontaine AA; Yoganathan AP
    Ann Biomed Eng; 2001 May; 29(5):406-13. PubMed ID: 11400721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitral valve prolapse: an atypical variation of the anatomy.
    Butany J; Privitera S; David TE
    Can J Cardiol; 2003 Nov; 19(12):1367-73. PubMed ID: 14631470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries.
    Lim KH; Yeo JH; Duran CM
    J Heart Valve Dis; 2005 May; 14(3):386-92. PubMed ID: 15974534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of biomechanical properties of aged human and ovine mitral valve chordae tendineae.
    Zuo K; Pham T; Li K; Martin C; He Z; Sun W
    J Mech Behav Biomed Mater; 2016 Sep; 62():607-618. PubMed ID: 27315372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.