These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36776419)

  • 1. Support vector machine based emissions modeling using particle swarm optimization for homogeneous charge compression ignition engine.
    Gordon D; Norouzi A; Blomeyer G; Bedei J; Aliramezani M; Andert J; Koch CR
    Int J Engine Res; 2023 Feb; 24(2):536-551. PubMed ID: 36776419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emissions from homogeneous charge compression ignition (HCCI) engine using different fuels: a review.
    Verma SK; Gaur S; Akram T; Gautam S; Kumar A
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):50960-50969. PubMed ID: 34342822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the dynamic operating envelope of HCCI engines using class imbalance learning.
    Janakiraman VM; Nguyen X; Sterniak J; Assanis D
    IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):98-112. PubMed ID: 25532159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study to Predict Ignition Delay of an Engine Using Diesel and Biodiesel Fuel Based on the ANN and SVM Machine Learning Methods.
    Tuan NV; Minh DQ; Khoa NX; Lim O
    ACS Omega; 2023 Mar; 8(11):9995-10005. PubMed ID: 36969432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.
    Vaughan A; Bohac SV
    Neural Netw; 2015 Oct; 70():18-26. PubMed ID: 26164437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Neural Network Modeling and Numerical Simulation of Syngas Fuel and Injection Timing Effects on the Performance and Emissions of a Heavy-Duty Compression Ignition Engine.
    Foroutani S; Salehi G; Fallahsohi H; Lary K; Arasteh AM
    ACS Omega; 2021 Dec; 6(48):32379-32394. PubMed ID: 34901590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.
    Ganesh D; Nagarajan G; Ganesan S
    Environ Sci Technol; 2014; 48(5):3039-46. PubMed ID: 24383396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of optimum operating parameters of MWCNT-doped ethanol fueled HCCI engine for emission reduction.
    Kocakulak T; Arslan TA; Şahin F; Solmaz H; Ardebili SMS; Calam A
    Sci Total Environ; 2023 Oct; 895():165196. PubMed ID: 37391142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of black carbon in marine engines and correlation analysis of model characteristics based on multiple machine learning algorithms.
    Sun Y; Lü L; Cai YK; Lee P
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):78509-78525. PubMed ID: 35697984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines.
    Buruiana DL; Sachelarie A; Butnaru C; Ghisman V
    Int J Environ Res Public Health; 2021 Aug; 18(17):. PubMed ID: 34501664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On reducing the emissions of CO, HC, and NO
    Barboza ABV; Mohan S; Dinesha P
    Environ Pollut; 2022 Oct; 310():119866. PubMed ID: 35944781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation and exergy analysis on homogeneous charge compression ignition engine fueled with natural gas and diethyl ether.
    Natesan V; Periyasamy S; Muniappan K; Rajamohan S
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6677-6695. PubMed ID: 30632044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning models for the prediction of turbulent combustion speed for hydrogen-natural gas spark ignition engines.
    Issondj Banta NJ; Patrick N; Offole F; Mouangue R
    Heliyon; 2024 May; 10(9):e30497. PubMed ID: 38765124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. System based on thermal control of the HCCI technology developed for reduction of the vehicle NO
    Puškár M; Kopas M
    Sci Total Environ; 2018 Dec; 643():674-680. PubMed ID: 29957432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill.
    Abunama T; Othman F; Ansari M; El-Shafie A
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal-robust selection of a fuel surrogate for homogeneous charge compression ignition modeling.
    García-Camacha Gutiérrez I; Martín Martín R; Sanz Argent J
    PLoS One; 2020; 15(6):e0234963. PubMed ID: 32584832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combustion control of DME HCCI using charge dilution and spark assistance.
    Yu X; LeBlanc S; Sandhu N; Tjong J; Zheng M
    Proc Inst Mech Eng D J Automob Eng; 2023 Jul; 237(8):1959-1974. PubMed ID: 37435439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation on n-butanol/methyl oleate dual fuel RCCI combustion in a single cylinder engine at high-load condition.
    Wang X; Zhang Q; Liu F; Jin Y; Li X
    Sci Rep; 2021 Dec; 11(1):24211. PubMed ID: 34930977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and Predicting Heavy-Duty Vehicle Engine-Out and Tailpipe Nitrogen Oxide (
    Pillai R; Triantopoulos V; Berahas AS; Brusstar M; Sun R; Nevius T; Boehman AL
    Front Mech Eng; 2022; 8():. PubMed ID: 35445105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Compression Ratio Active Pre-chamber Single-Cylinder Gasoline Engine with 50% Gross Indicated Thermal Efficiency.
    Zhan W; Chen H; Du J; Wang B; Xie F; Li Y
    ACS Omega; 2023 Feb; 8(5):4756-4766. PubMed ID: 36777567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.