BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 367766)

  • 21. Adsorption, desorption, potential and selective distribution of heavy metals in selected soils of Japan.
    Biddappa CC; Chino M; Kumazawa K
    J Environ Sci Health B; 1981; 16(4):511-28. PubMed ID: 7288098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of EDTA washing on the species and mobility of heavy metals residual in soils.
    Zhang W; Huang H; Tan F; Wang H; Qiu R
    J Hazard Mater; 2010 Jan; 173(1-3):369-76. PubMed ID: 19748734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uptake of metals by food plants grown on soils 10 years after biosolids application.
    Bai Y; Chen W; Chang AC; Page AL
    J Environ Sci Health B; 2010 Aug; 45(6):531-9. PubMed ID: 20603745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants.
    Sapkota B; Cioppa MT
    Environ Pollut; 2012 Nov; 170():131-44. PubMed ID: 22789520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of fresh and composted solid olive husk and their water-soluble fractions on soil heavy metal fractionation; microbial biomass and plant uptake.
    de la Fuente C; Clemente R; Martínez-Alcalá I; Tortosa G; Bernal MP
    J Hazard Mater; 2011 Feb; 186(2-3):1283-9. PubMed ID: 21216095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake.
    Shahid M; Dumat C; Khalid S; Schreck E; Xiong T; Niazi NK
    J Hazard Mater; 2017 Mar; 325():36-58. PubMed ID: 27915099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal accumulation in wild plants surrounding mining wastes.
    González RC; González-Chávez MC
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pedological characteristics of Mn mine tailings and metal accumulation by native plants.
    Wang X; Liu Y; Zeng G; Chai L; Xiao X; Song X; Min Z
    Chemosphere; 2008 Jul; 72(9):1260-6. PubMed ID: 18555510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Root excretion and plant resistance to metal toxicity].
    Chang X; Duan C; Wang H
    Ying Yong Sheng Tai Xue Bao; 2000 Apr; 11(2):315-20. PubMed ID: 11767623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new method to measure effective soil solution concentration predicts copper availability to plants.
    Zhang H; Zhao FJ; Sun B; Davison W; McGrath SP
    Environ Sci Technol; 2001 Jun; 35(12):2602-7. PubMed ID: 11432571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Too much is bad--an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions.
    Anjum NA; Singh HP; Khan MI; Masood A; Per TS; Negi A; Batish DR; Khan NA; Duarte AC; Pereira E; Ahmad I
    Environ Sci Pollut Res Int; 2015 Mar; 22(5):3361-82. PubMed ID: 25408077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.
    Yang SX; Liao B; Li JT; Guo T; Shu WS
    Chemosphere; 2010 Aug; 80(8):852-9. PubMed ID: 20580409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants.
    Muhammad I; Puschenreiter M; Wenzel WW
    Sci Total Environ; 2012 Feb; 416():490-500. PubMed ID: 22177029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A geochemical study of toxic metal translocation in an urban brownfield wetland.
    Qian Y; Gallagher FJ; Feng H; Wu M
    Environ Pollut; 2012 Jul; 166():23-30. PubMed ID: 22459711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.