These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 367766)

  • 41. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review.
    Khan I; Awan SA; Rizwan M; Ali S; Hassan MJ; Brestic M; Zhang X; Huang L
    Ecotoxicol Environ Saf; 2021 Oct; 222():112510. PubMed ID: 34273846
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge.
    Kidd PS; Domínguez-Rodríguez MJ; Díez J; Monterroso C
    Chemosphere; 2007 Jan; 66(8):1458-67. PubMed ID: 17109934
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.).
    Carbonell G; de Imperial RM; Torrijos M; Delgado M; Rodriguez JA
    Chemosphere; 2011 Nov; 85(10):1614-23. PubMed ID: 21908014
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of organic pollutants on metal and As uptake by helophyte species and consequences for constructed wetlands design and management.
    Guittonny-Philippe A; Masotti V; Claeys-Bruno M; Malleret L; Coulomb B; Prudent P; Höhener P; Petit MÉ; Sergent M; laffont-Schwob I
    Water Res; 2015 Jan; 68():328-41. PubMed ID: 25462740
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora.
    Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E
    J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Elevated concentrations of trace elements in soil do not necessarily reflect metals available to plants.
    Antonious GF; Silitonga MR; Tsegaye TD; Unrine JM; Coolong T; Snyder JC
    J Environ Sci Health B; 2013; 48(3):219-25. PubMed ID: 23356344
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances.
    Halim M; Conte P; Piccolo A
    Chemosphere; 2003 Jul; 52(1):265-75. PubMed ID: 12729711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioavailability of heavy metals from polluted soils to plants.
    Chojnacka K; Chojnacki A; Górecka H; Górecki H
    Sci Total Environ; 2005 Jan; 337(1-3):175-82. PubMed ID: 15626388
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China.
    Li W; Xu B; Song Q; Liu X; Xu J; Brookes PC
    Sci Total Environ; 2014 Feb; 472():407-20. PubMed ID: 24295757
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Behavior and impact of zirconium in the soil-plant system: plant uptake and phytotoxicity.
    Shahid M; Ferrand E; Schreck E; Dumat C
    Rev Environ Contam Toxicol; 2013; 221():107-27. PubMed ID: 23090631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metal partitioning and uptake in central Ontario forests.
    Watmough SA; Dillon PJ; Epova EN
    Environ Pollut; 2005 Apr; 134(3):493-502. PubMed ID: 15620595
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece.
    Sawidis T; Chettri MK; Zachariadis GA; Stratis JA
    Ecotoxicol Environ Saf; 1995 Oct; 32(1):73-80. PubMed ID: 8565880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of Fe plaque and organic acids on metal uptake by wetland plants under drained and waterlogged conditions.
    Li WC; Deng H; Wong MH
    Environ Pollut; 2017 Dec; 231(Pt 1):732-741. PubMed ID: 28858668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lead stress effects on physiobiochemical activities of higher plants.
    Sengar RS; Gautam M; Sengar RS; Garg SK; Sengar K; Chaudhary R
    Rev Environ Contam Toxicol; 2008; 196():73-93. PubMed ID: 19025093
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of nanoparticles on trace element uptake and toxicity in plants: A review.
    Rizwan M; Ali S; Rehman MZU; Riaz M; Adrees M; Hussain A; Zahir ZA; Rinklebe J
    Ecotoxicol Environ Saf; 2021 Sep; 221():112437. PubMed ID: 34153540
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil.
    Zhu Y; Xu F; Liu Q; Chen M; Liu X; Wang Y; Sun Y; Zhang L
    Sci Total Environ; 2019 Apr; 662():414-421. PubMed ID: 30690375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.