These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36776974)

  • 1. Effects of different simulated submarine escape depths by free ascent in animal models.
    Bao XC; Wang N; Xu J; Ma J; Fang YQ
    Front Physiol; 2023; 14():1107782. PubMed ID: 36776974
    [No Abstract]   [Full Text] [Related]  

  • 2. Expression changes of inflammatory factors in the rat lung of decompression sickness induced by fast buoyancy ascent escape.
    Wang HT; Fang YQ; You P; Bao XC; Yuan HR; Ma J; Wang FF; Li KC
    Undersea Hyperb Med; 2015; 42(1):15-22. PubMed ID: 26094300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Submarine escape trials 1999-2001--provision of medical support.
    Benton P
    J R Nav Med Serv; 2002; 88(3):108-15. PubMed ID: 12838773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility of pharmacological mitigation of nitrogen narcosis during submarine escapes from depths down to 1,000 fsw.
    Ferrigno M; Tahir N; Connor CW
    Undersea Hyperb Med; 2011; 38(6):549-55. PubMed ID: 22292260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decompression illness in goats following simulated submarine escape: 1993-2006.
    Seddon FM; Thacker JC; Fisher AS; Jurd KM; White MG; Loveman GA
    Undersea Hyperb Med; 2014; 41(4):301-6. PubMed ID: 25109083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buoyant ascent rate profiles for the MK10 and MK11 submarine escape and immersion equipment.
    Fothergill DM; Frederick CS; Hughes LM
    Undersea Hyperb Med; 2023; 50(4):343-358. PubMed ID: 38055875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of breathing hyperoxic gas during simulated submarine escape on venous gas emboli and decompression illness.
    Blogg SL; Gennser M; Loveman GA; Seddon FM; Thacker JC; White MG
    Undersea Hyperb Med; 2003; 30(3):163-74. PubMed ID: 14620096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submarine 'safe to escape' studies in man.
    Jurd KM; Seddon FM; Thacker JC; Blogg SL; Stansfield MR; White MG; Loveman GA
    Undersea Hyperb Med; 2014; 41(4):307-14. PubMed ID: 25109084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Submarine tower escape decompression sickness risk estimation.
    Loveman GA; Seddon EM; Thacker JC; Stansfield MR; Jurd KM
    Undersea Hyperb Med; 2014; 41(4):315-29. PubMed ID: 25109085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen or carbogen breathing before simulated submarine escape.
    Gennser M; Blogg SL
    J Appl Physiol (1985); 2008 Jan; 104(1):50-6. PubMed ID: 17975127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression changes of TNF-α, IL-1β and IL-6 in the rat lung of decompression sickness induced by fast buoyancy ascent escape.
    Wang HT; Fang YQ; Bao XC; Yuan HR; Ma J; Wang FF; Zhang S; Li KC
    Undersea Hyperb Med; 2015; 42(1):23-31. PubMed ID: 26094301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Venous gas emboli in goats after simulated submarine escape from 290 msw breathing air or hyperoxic gas.
    Gennser M; Blogg SL
    Aviat Space Environ Med; 2009 Nov; 80(11):927-32. PubMed ID: 19911515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escape from a disabled submarine: decompression sickness risk estimation.
    Parker EC; Ball R; Tibbles PM; Weathersby PK
    Aviat Space Environ Med; 2000 Feb; 71(2):109-14. PubMed ID: 10685582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Submarine escape from depths of 30 and 60 feet: 41,183 training ascents without serious injury.
    Yildiz S; Ay H; Günay A; Yaygili S; Aktaş S
    Aviat Space Environ Med; 2004 Mar; 75(3):269-71. PubMed ID: 15018296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Submarine escape breathing air. A review and analysis of animal and human experiments by the Royal Navy.
    Donald KW
    Bull Eur Physiopathol Respir; 1979; 15(5):739-54. PubMed ID: 389328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and psychological effects of escape from a sunken submarine on shore and at sea.
    Trousselard M; Cian C; Barraud PA; Ferhani O; Roux A; Claverie D; Canini F; Baert P
    Aviat Space Environ Med; 2009 Oct; 80(10):850-6. PubMed ID: 19817236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spirometric indices and the risk of pulmonary barotrauma in submarine escape training.
    Benton PJ; Francis TJ; Pethybridge RJ
    Undersea Hyperb Med; 1999; 26(4):213-7. PubMed ID: 10642066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of nuclear radiation on rat model of decompression sickness induced by large depth rapid floating escape].
    Xu J; Fang YQ; Bao XC; Yuan HR; Wang N; Wang FF
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2021 Sep; 37(5):486-489. PubMed ID: 34816658
    [No Abstract]   [Full Text] [Related]  

  • 19. First Aid Oxygen Treatment for Decompression Illness in the Goat After Simulated Submarine Escape.
    Loveman GA; Seddon FM; Jurd KM; Thacker JC; Fisher AS
    Aerosp Med Hum Perform; 2015 Dec; 86(12):1020-7. PubMed ID: 26630048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Predictors of Pressurized Submarine Escape Training (PSET) Attrition.
    Hughes LM; Clarke J
    Mil Med; 2019 Mar; 184(Suppl 1):476-487. PubMed ID: 30901464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.