BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36777089)

  • 1. The global scale, distribution and growth of aviation: Implications for climate change.
    Gössling S; Humpe A
    Glob Environ Change; 2020 Nov; 65():102194. PubMed ID: 36777089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The new CORSIA baseline has limited motivation to promote the green recovery of global aviation.
    Zhang J; Zhang S; Wu R; Duan M; Zhang D; Wu Y; Hao J
    Environ Pollut; 2021 Nov; 289():117833. PubMed ID: 34332166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial Long-Term Scenarios for COVID-19's Impact on Aviation and Implications for Climate Policy.
    Dray L; Schäfer AW
    Transp Res Rec; 2023 Apr; 2677(4):204-218. PubMed ID: 37153209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of COVID-19 on air passenger demand and CO
    Bazzo Vieira JP; Vieira Braga CK; Pereira RHM
    Energy Policy; 2022 May; 164():112906. PubMed ID: 35291394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jet-setting during COVID-19: Environmental implications of the pandemic induced private aviation boom.
    Sobieralski JB; Mumbower S
    Transp Res Interdiscip Perspect; 2022 Mar; 13():100575. PubMed ID: 35252843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unprecedented Impacts of Aviation Emissions on Global Environmental and Climate Change Scenario.
    Sher F; Raore D; Klemeš JJ; Rafi-Ul-Shan PM; Khzouz M; Marintseva K; Razmkhah O
    Curr Pollut Rep; 2021; 7(4):549-564. PubMed ID: 34777950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018.
    Lee DS; Fahey DW; Skowron A; Allen MR; Burkhardt U; Chen Q; Doherty SJ; Freeman S; Forster PM; Fuglestvedt J; Gettelman A; De León RR; Lim LL; Lund MT; Millar RJ; Owen B; Penner JE; Pitari G; Prather MJ; Sausen R; Wilcox LJ
    Atmos Environ (1994); 2021 Jan; 244():117834. PubMed ID: 32895604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects.
    Grewe V; Gangoli Rao A; Grönstedt T; Xisto C; Linke F; Melkert J; Middel J; Ohlenforst B; Blakey S; Christie S; Matthes S; Dahlmann K
    Nat Commun; 2021 Jun; 12(1):3841. PubMed ID: 34158484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trends on current and forecasted aircraft hybrid electric architectures and their impact on environment.
    Zaporozhets O; Isaienko V; Synylo K
    Energy (Oxf); 2020 Nov; 211():118814. PubMed ID: 32929300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigation effects of alternative aviation fuels on non-volatile particulate matter emissions from aircraft gas turbine engines: A review.
    Zhang C; Chen L; Ding S; Zhou X; Chen R; Zhang X; Yu Z; Wang J
    Sci Total Environ; 2022 May; 820():153233. PubMed ID: 35066040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passenger, airline, and policy responses to the COVID-19 crisis: The case of South Korea.
    Kim M; Sohn J
    J Air Transp Manag; 2022 Jan; 98():102144. PubMed ID: 34539103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct carbon dioxide emissions from civil aircraft.
    Grote M; Williams I; Preston J
    Atmos Environ (1994); 2014 Oct; 95():214-224. PubMed ID: 32288557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Give Up Flights? Psychological Predictors of Intentions and Policy Support to Reduce Air Travel.
    Berneiser JM; Becker AC; Loy LS
    Front Psychol; 2022; 13():926639. PubMed ID: 35992431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global mortality attributable to aircraft cruise emissions.
    Barrett SR; Britter RE; Waitz IA
    Environ Sci Technol; 2010 Oct; 44(19):7736-42. PubMed ID: 20809615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.
    Wayson RL; Fleming GG; Lovinelli R
    J Air Waste Manag Assoc; 2009 Jan; 59(1):91-100. PubMed ID: 19216192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. International aviation emissions to 2025: Can emissions be stabilised without restricting demand?
    Macintosh A; Wallace L
    Energy Policy; 2009 Jan; 37(1):264-273. PubMed ID: 32287868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assessment of air passenger confidence a year into the COVID-19 crisis: A segmentation analysis of passengers in Norway.
    Budd T; Suau-Sanchez P; Halpern N; Mwesiumo D; Bråthen S
    J Transp Geogr; 2021 Oct; 96():103204. PubMed ID: 34602757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path analysis for controlling climate change in global aviation.
    Cui Q; Lei YL; Jia ZK; Wang Y; Li Y
    iScience; 2024 Jun; 27(6):110126. PubMed ID: 38947511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of travel bans and travel intention changes on aviation emissions due to Covid-19 pandemic.
    Zeydan Ö; Zeydan I
    Environ Dev Sustain; 2023 Feb; ():1-18. PubMed ID: 36817739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global tourism, climate change and energy sustainability: assessing carbon reduction mitigating measures from the aviation industry.
    Leal Filho W; Ng AW; Sharifi A; Janová J; Özuyar PG; Hemani C; Heyes G; Njau D; Rampasso I
    Sustain Sci; 2023; 18(2):983-996. PubMed ID: 36105893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.