BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36777233)

  • 1. Cross-modal correspondence enhances elevation localization in visual-to-auditory sensory substitution.
    Bordeau C; Scalvini F; Migniot C; Dubois J; Ambard M
    Front Psychol; 2023; 14():1079998. PubMed ID: 36777233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generic HRTFs May be Good Enough in Virtual Reality. Improving Source Localization through Cross-Modal Plasticity.
    Berger CC; Gonzalez-Franco M; Tajadura-Jiménez A; Florencio D; Zhang Z
    Front Neurosci; 2018; 12():21. PubMed ID: 29456486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions Between Auditory Elevation, Auditory Pitch and Visual Elevation During Multisensory Perception.
    Jamal Y; Lacey S; Nygaard L; Sathian K
    Multisens Res; 2017 Jan; 30(3-5):287-306. PubMed ID: 31287081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-modal correspondence between auditory pitch and visual elevation modulates audiovisual temporal recalibration.
    Uno K; Yokosawa K
    Sci Rep; 2022 Dec; 12(1):21308. PubMed ID: 36494490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pitch-elevation and pitch-size cross-modal correspondences do not affect temporal ventriloquism.
    Uno K; Yokosawa K
    Atten Percept Psychophys; 2022 Apr; 84(3):1052-1063. PubMed ID: 35217979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound source localization with varying amount of visual information in virtual reality.
    Ahrens A; Lund KD; Marschall M; Dau T
    PLoS One; 2019; 14(3):e0214603. PubMed ID: 30925174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seeing with sound? exploring different characteristics of a visual-to-auditory sensory substitution device.
    Brown D; Macpherson T; Ward J
    Perception; 2011; 40(9):1120-35. PubMed ID: 22208131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of head position on the spatial representation of acoustic targets.
    Goossens HH; van Opstal AJ
    J Neurophysiol; 1999 Jun; 81(6):2720-36. PubMed ID: 10368392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid head-related transfer function adaptation using a virtual auditory environment.
    Parseihian G; Katz BF
    J Acoust Soc Am; 2012 Apr; 131(4):2948-57. PubMed ID: 22501072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling sound-source localization in sagittal planes for human listeners.
    Baumgartner R; Majdak P; Laback B
    J Acoust Soc Am; 2014 Aug; 136(2):791-802. PubMed ID: 25096113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effect of near-threshold stimulus intensities on sound localization performance in azimuth and elevation in normal human subjects.
    Su TI; Recanzone GH
    J Assoc Res Otolaryngol; 2001 Sep; 2(3):246-56. PubMed ID: 11669397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of Sound Localization in Two Functionally Distinct Regions of the Auditory Cortex.
    Razak KA; Yarrow S; Brewton D
    J Neurosci; 2015 Dec; 35(49):16105-15. PubMed ID: 26658863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usability of Individualized Head-Related Transfer Functions in Virtual Reality: Empirical Study With Perceptual Attributes in Sagittal Plane Sound Localization.
    Jenny C; Reuter C
    JMIR Serious Games; 2020 Sep; 8(3):e17576. PubMed ID: 32897232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural auditory scene statistics shapes human spatial hearing.
    Parise CV; Knorre K; Ernst MO
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):6104-8. PubMed ID: 24711409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impoverished auditory cues limit engagement of brain networks controlling spatial selective attention.
    Deng Y; Choi I; Shinn-Cunningham B; Baumgartner R
    Neuroimage; 2019 Nov; 202():116151. PubMed ID: 31493531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Adaptation in Azimuth and Elevation to Acute Monaural Spatial Hearing after Training with Visual Feedback.
    Zonooz B; Van Opstal AJ
    eNeuro; 2019; 6(6):. PubMed ID: 31601632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvements of sound localization abilities by the facial ruff of the barn owl (Tyto alba) as demonstrated by virtual ruff removal.
    Hausmann L; von Campenhausen M; Endler F; Singheiser M; Wagner H
    PLoS One; 2009 Nov; 4(11):e7721. PubMed ID: 19890389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased 3D-sound spatialization accuracy caused by speech bandwidth limitation over commodity audio components.
    Grafals O; Gupta N; Cremades G; Barreto A; Adjouadi M
    Biomed Sci Instrum; 2000; 36():245-50. PubMed ID: 10834240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization using nonindividualized head-related transfer functions.
    Wenzel EM; Arruda M; Kistler DJ; Wightman FL
    J Acoust Soc Am; 1993 Jul; 94(1):111-23. PubMed ID: 8354753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-Modal Correspondence Between Speech Sound and Visual Shape Influencing Perceptual Representation of Shape: the Role of Articulation and Pitch.
    Kwak Y; Nam H; Kim HW; Kim CY
    Multisens Res; 2020 Oct; 33(6):569-598. PubMed ID: 32083558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.