BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 36777251)

  • 21. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants.
    Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW
    J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis.
    Zhang Y; Sun N; Zhu M; Qiu Q; Zhao P; Zheng C; Bai Q; Zeng Q; Lu T
    Biomater Adv; 2022 Feb; 133():112651. PubMed ID: 35034817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants.
    Ahn H; Patel RR; Hoyt AJ; Lin ASP; Torstrick FB; Guldberg RE; Frick CP; Carpenter RD; Yakacki CM; Willett NJ
    Acta Biomater; 2018 May; 72():352-361. PubMed ID: 29563069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating.
    Li Y; Yang W; Li X; Zhang X; Wang C; Meng X; Pei Y; Fan X; Lan P; Wang C; Li X; Guo Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5715-24. PubMed ID: 25711714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing.
    Zheng Y; Han Q; Wang J; Li D; Song Z; Yu J
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5181-5190. PubMed ID: 33455268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A pH-neutral bioactive glass coated 3D-printed porous Ti6Al4V scaffold with enhanced osseointegration.
    Wang X; Guo Q; He Y; Geng X; Wang C; Li Y; Li Z; Wang C; Qiu D; Tian H
    J Mater Chem B; 2023 Feb; 11(6):1203-1212. PubMed ID: 36515141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes.
    Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K
    J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanotube-decorated hierarchical tantalum scaffold promoted early osseointegration.
    Zhang Z; Li Y; He P; Liu F; Li L; Zhang H; Ji P; Yang S
    Nanomedicine; 2021 Jul; 35():102390. PubMed ID: 33857685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteogenic differentiation of 3D-printed porous tantalum with nano-topographic modification for repairing craniofacial bone defects.
    Zhang C; Zhou Z; Liu N; Chen J; Wu J; Zhang Y; Lin K; Zhang S
    Front Bioeng Biotechnol; 2023; 11():1258030. PubMed ID: 37671184
    [No Abstract]   [Full Text] [Related]  

  • 30. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: Animal models and bone ingrowth outcome measures.
    Spece H; Basgul C; Andrews CE; MacDonald DW; Taheri ML; Kurtz SM
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1436-1454. PubMed ID: 33484102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants.
    Bencharit S; Byrd WC; Altarawneh S; Hosseini B; Leong A; Reside G; Morelli T; Offenbacher S
    Clin Implant Dent Relat Res; 2014 Dec; 16(6):817-26. PubMed ID: 23527899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The clinical application of customized 3D-printed porous tantalum scaffolds combined with Masquelet's induced membrane technique to reconstruct infective segmental femoral defect.
    Wu Y; Shi X; Zi S; Li M; Chen S; Zhang C; Xu Y
    J Orthop Surg Res; 2022 Nov; 17(1):479. PubMed ID: 36335402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Static Compressive Behavior and Failure Mechanism of Tantalum Scaffolds with Optimized Periodic Lattice Fabricated by Laser-Based Additive Manufacturing.
    Gao H; Yang J; Jin X; Zhang D; Zhang S; Zhang F; Chen H
    3D Print Addit Manuf; 2023 Oct; 10(5):887-904. PubMed ID: 37886405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications.
    Xu W; Tian J; Liu Z; Lu X; Hayat MD; Yan Y; Li Z; Qu X; Wen C
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110015. PubMed ID: 31546430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.
    Taniguchi N; Fujibayashi S; Takemoto M; Sasaki K; Otsuki B; Nakamura T; Matsushita T; Kokubo T; Matsuda S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():690-701. PubMed ID: 26652423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-strength, porous additively manufactured implants with optimized mechanical osseointegration.
    Kelly CN; Wang T; Crowley J; Wills D; Pelletier MH; Westrick ER; Adams SB; Gall K; Walsh WR
    Biomaterials; 2021 Dec; 279():121206. PubMed ID: 34715639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation.
    Yue X; Zhao L; Yang J; Jiao X; Wu F; Zhang Y; Li Y; Qiu J; Ke X; Sun X; Yang X; Gou Z; Zhang L; Yang G
    Front Bioeng Biotechnol; 2023; 11():1260639. PubMed ID: 37840661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of Porous Tantalum with Low Elastic Modulus and Tunable Pore Size for Bone Repair.
    Liang D; Zhong C; Jiang F; Liao J; Ye H; Ren F
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1720-1728. PubMed ID: 36780252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.