BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36777332)

  • 1. Ambulatory Monitoring of Subglottal Pressure Estimated from Neck-Surface Vibration in Individuals with and without Voice Disorders.
    Cortés JP; Lin JZ; Marks KL; Espinoza VM; Ibarra EJ; Zañartu M; Hillman RE; Mehta DD
    Appl Sci (Basel); 2022 Nov; 12(21):. PubMed ID: 36777332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model.
    Ibarra EJ; Parra JA; Alzamendi GA; Cortés JP; Espinoza VM; Mehta DD; Hillman RE; Zañartu M
    Front Physiol; 2021; 12():732244. PubMed ID: 34539451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved subglottal pressure estimation from neck-surface vibration in healthy speakers producing non-modal phonation.
    Lin JZ; Espinoza VM; Marks KL; Zañartu M; Mehta DD
    IEEE J Sel Top Signal Process; 2020 Feb; 14(2):449-460. PubMed ID: 34079612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glottal Aerodynamics Estimated From Neck-Surface Vibration in Women With Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction.
    Espinoza VM; Mehta DD; Van Stan JH; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2020 Sep; 63(9):2861-2869. PubMed ID: 32755502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Subglottal Pressure From Neck Surface Vibration in Patients With Voice Disorders.
    Marks KL; Lin JZ; Burns JA; Hron TA; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2020 Jul; 63(7):2202-2218. PubMed ID: 32610028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating Subglottal Pressure From Neck-Surface Acceleration During Normal Voice Production.
    Fryd AS; Van Stan JH; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2016 Dec; 59(6):1335-1345. PubMed ID: 27959974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between vocal function measures derived from an acoustic microphone and a subglottal neck-surface accelerometer.
    Mehta DD; Van Stan JH; Hillman RE
    IEEE/ACM Trans Audio Speech Lang Process; 2016 Apr; 24(4):659-668. PubMed ID: 27066520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Utility of the Ratio of Sound Pressure Level to Subglottal Pressure in Patients Surgically Treated for Phonotraumatic Vocal Fold Lesions.
    Toles LE; Seidman AY; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2022 Aug; 65(8):2778-2788. PubMed ID: 35914023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subglottal Impedance-Based Inverse Filtering of Voiced Sounds Using Neck Surface Acceleration.
    Zañartu M; Ho JC; Mehta DD; Hillman RE; Wodicka GR
    IEEE Trans Audio Speech Lang Process; 2013 Sep; 21(9):1929-1939. PubMed ID: 25400531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB; Engebretson AM; Vemula NR
    J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamic Outcomes of Four Common Voice Disorders: Moving Toward Disorder-Specific Assessment.
    Dastolfo C; Gartner-Schmidt J; Yu L; Carnes O; Gillespie AI
    J Voice; 2016 May; 30(3):301-7. PubMed ID: 26001500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnitude of Neck-Surface Vibration as an Estimate of Subglottal Pressure During Modulations of Vocal Effort and Intensity in Healthy Speakers.
    McKenna VS; Llico AF; Mehta DD; Perkell JS; Stepp CE
    J Speech Lang Hear Res; 2017 Dec; 60(12):3404-3416. PubMed ID: 29204608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating subglottal pressure and vocal fold adduction from the produced voice in a single-subject study (L).
    Zhang Z
    J Acoust Soc Am; 2022 Feb; 151(2):1337. PubMed ID: 35232110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subglottal pressure oscillations accompanying phonation.
    Sundberg J; Scherer R; Hess M; Müller F; Granqvist S
    J Voice; 2013 Jul; 27(4):411-21. PubMed ID: 23809566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voice therapy for vocal fold paralysis.
    Miller S
    Otolaryngol Clin North Am; 2004 Feb; 37(1):105-19. PubMed ID: 15062689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relation between subglottal pressure and fundamental frequency in phonation.
    Titze IR
    J Acoust Soc Am; 1989 Feb; 85(2):901-6. PubMed ID: 2926005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anatomically based, time-domain acoustic model of the subglottal system for speech production.
    Ho JC; Zañartu M; Wodicka GR
    J Acoust Soc Am; 2011 Mar; 129(3):1531-47. PubMed ID: 21428517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects on the glottal voice source of vocal loudness variation in untrained female and male voices.
    Sundberg J; Fahlstedt E; Morell A
    J Acoust Soc Am; 2005 Feb; 117(2):879-85. PubMed ID: 15759707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal tract adjustments to minimize vocal fold contact pressure during phonation.
    Zhang Z
    J Acoust Soc Am; 2021 Sep; 150(3):1609. PubMed ID: 34598628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subglottal pressure oscillations in anechoic and resonant conditions and their influence on excised larynx phonations.
    Lehoux S; Hampala V; Švec JG
    Sci Rep; 2021 Jan; 11(1):28. PubMed ID: 33420107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.