BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36777588)

  • 1. Chemical Recycling of Polyurethane Waste via a Microwave-Assisted Glycolysis Process.
    Donadini R; Boaretti C; Lorenzetti A; Roso M; Penzo D; Dal Lago E; Modesti M
    ACS Omega; 2023 Feb; 8(5):4655-4666. PubMed ID: 36777588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of Flexible Polyurethane Foam Waste for Efficient Reuse in Industrial Formulations.
    Kiss G; Rusu G; Peter F; Tănase I; Bandur G
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32664336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deamination of Polyols from the Glycolysis of Polyurethane.
    Donadini R; Boaretti C; Scopel L; Lorenzetti A; Modesti M
    Chemistry; 2024 Jan; 30(3):e202301919. PubMed ID: 37844012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization.
    Miguel-Fernández R; Amundarain I; Asueta A; García-Fernández S; Arnaiz S; Miazza NL; Montón E; Rodríguez-García B; Bianca-Benchea E
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolysis recycling of rigid waste polyurethane foam from refrigerators.
    Zhu P; Cao ZB; Chen Y; Zhang XJ; Qian GR; Chu YL; Zhou M
    Environ Technol; 2014; 35(21-24):2676-84. PubMed ID: 25176301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolysis of Polyurethanes Composites Containing Nanosilica.
    Del Amo J; Borreguero AM; Ramos MJ; Rodríguez JF
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on Efficient Degradation of Waste PU Foam.
    Gu X; Wang X; Guo X; Liu S; Lou C; Liu Y
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Aerogel-Modified Recycled Polyurethane Nanocomposites.
    Gu X; Zhu S; Liu S; Liu Y
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams.
    Amundarain I; Miguel-Fernández R; Asueta A; García-Fernández S; Arnaiz S
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on Green Degradation Process of Polyurethane Foam Based on Integral Utilization and Performance of Recycled Polyurethane Oil-Absorbing Foam.
    Peng S; Gong D; Zhou Y; Zhang C; Li Y; Zhang C; Sheng Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling of Flexible Polyurethane Foam by Split-Phase Alcoholysis: Identification of Additives and Alcoholyzing Agents to Reach Higher Efficiencies.
    Vanbergen T; Verlent I; De Geeter J; Haelterman B; Claes L; De Vos D
    ChemSusChem; 2020 Aug; 13(15):3835-3843. PubMed ID: 32469159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability.
    Simón D; Borreguero AM; de Lucas A; Rodríguez JF
    Waste Manag; 2018 Jun; 76():147-171. PubMed ID: 29625876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Factors Influencing the Efficiency of Catalysts Used in Waste PU Degradation.
    Gu X; Wang X; Wang T; Zhu Y; Guo X; Liu S; Zhu S; Liu Y
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane Foam Chemical Recycling: Fast Acidolysis with Maleic Acid and Full Recovery of Polyol.
    Liu B; Westman Z; Richardson K; Lim D; Stottlemyer AL; Farmer T; Gillis P; Hooshyar N; Vlcek V; Christopher P; Abu-Omar MM
    ACS Sustain Chem Eng; 2024 Mar; 12(11):4435-4443. PubMed ID: 38516400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the economic recycling potential of a glycolysis treatment of rigid polyurethane foam waste: A case study from Thailand.
    Kanchanapiya P; Intaranon N; Tantisattayakul T
    J Environ Manage; 2021 Feb; 280():111638. PubMed ID: 33293164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Functionality Bio-Polyols from Tall Oil and Rigid Polyurethane Foams Formulated Solely Using Bio-Polyols.
    Kirpluks M; Vanags E; Abolins A; Michalowski S; Fridrihsone A; Cabulis U
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reviewing the thermo-chemical recycling of waste polyurethane foam.
    Deng Y; Dewil R; Appels L; Ansart R; Baeyens J; Kang Q
    J Environ Manage; 2021 Jan; 278(Pt 1):111527. PubMed ID: 33126201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams.
    Borowicz M; Isbrandt M; Paciorek-Sadowska J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study and Characterization of Regenerated Hard Foam Prepared by Polyol Hydrolysis of Waste Polyurethane.
    Gu X; Wang X; Guo X; Liu S; Li Q; Liu Y
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.
    Xue BL; Wen JL; Sun RC
    Materials (Basel); 2015 Feb; 8(2):586-599. PubMed ID: 28787959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.