These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 36777641)
1. A novel non-invasive brain stimulation technique: "Temporally interfering electrical stimulation". Guo W; He Y; Zhang W; Sun Y; Wang J; Liu S; Ming D Front Neurosci; 2023; 17():1092539. PubMed ID: 36777641 [TBL] [Abstract][Full Text] [Related]
2. Precise Temporal Control of Interferential Neural Stimulation via Phase Modulation. Terasawa Y; Tashiro H; Ueno T; Ohta J IEEE Trans Biomed Eng; 2022 Jan; 69(1):220-228. PubMed ID: 34161235 [TBL] [Abstract][Full Text] [Related]
3. Temporal interference stimulation targets deep primate brain. Liu R; Zhu G; Wu Z; Gan Y; Zhang J; Liu J; Wang L Neuroimage; 2024 May; 291():120581. PubMed ID: 38508293 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis of noninvasive deep temporal interference stimulation: A simulation and experimental study. Mojiri Z; Akhavan A; Rouhani E; Zahabi SJ Heliyon; 2024 Apr; 10(8):e29482. PubMed ID: 38655334 [TBL] [Abstract][Full Text] [Related]
5. Population-level insights into temporal interference for focused deep brain neuromodulation. Yatsuda K; Yu W; Gomez-Tames J Front Hum Neurosci; 2024; 18():1308549. PubMed ID: 38708141 [TBL] [Abstract][Full Text] [Related]
6. Feasibility of epidural temporal interference stimulation for minimally invasive electrical deep brain stimulation: simulation and phantom experimental studies. Lee S; Park J; Choi DS; Lim S; Kwak Y; Jang DP; Kim DH; Ji HB; Choy YB; Im CH J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36066021 [No Abstract] [Full Text] [Related]
7. Development of a Non-invasive Deep Brain Stimulator With Precise Positioning and Real-Time Monitoring of Bioimpedance. Wang H; Shi Z; Sun W; Zhang J; Wang J; Shi Y; Yang R; Li C; Chen D; Wu J; Gongyao G; Xu Y Front Neuroinform; 2020; 14():574189. PubMed ID: 33363461 [TBL] [Abstract][Full Text] [Related]
8. Visualizing interferential stimulation of human brains. Huang Y Front Hum Neurosci; 2023; 17():1239114. PubMed ID: 37954939 [TBL] [Abstract][Full Text] [Related]
9. STIMULUS: Noninvasive Dynamic Patterns of Neurostimulation Using Spatio-Temporal Interference. Cao J; Grover P IEEE Trans Biomed Eng; 2020 Mar; 67(3):726-737. PubMed ID: 31150335 [TBL] [Abstract][Full Text] [Related]
10. Neuromodulation via Interferential Electrical Stimulation as a Novel Therapy in Gastrointestinal Motility Disorders. Moore JS; Gibson PR; Burgell RE J Neurogastroenterol Motil; 2018 Jan; 24(1):19-29. PubMed ID: 29291605 [TBL] [Abstract][Full Text] [Related]
12. Computational Modeling of Spatially Selective Retinal Stimulation With Temporally Interfering Electric Fields. Su X; Guo J; Zhou M; Chen J; Li L; Chen Y; Sui X; Li H; Chai X IEEE Trans Neural Syst Rehabil Eng; 2021; 29():418-428. PubMed ID: 33507871 [TBL] [Abstract][Full Text] [Related]
13. Individually customized transcranial temporal interference stimulation for focused modulation of deep brain structures: a simulation study with different head models. Lee S; Lee C; Park J; Im CH Sci Rep; 2020 Jul; 10(1):11730. PubMed ID: 32678264 [TBL] [Abstract][Full Text] [Related]
14. Comparison of optimized interferential stimulation using two pairs of electrodes and two arrays of electrodes. Huang Y; Datta A Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4180-4183. PubMed ID: 34892145 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of Interferential and Pulsed Transcranial Electrical Stimulation for Neuromodulation at the Human Scale. Howell B; McIntyre CC Neuromodulation; 2021 Jul; 24(5):843-853. PubMed ID: 32147953 [TBL] [Abstract][Full Text] [Related]
16. Temporal interference stimulation targets deep brain regions by modulating neural oscillations. Esmaeilpour Z; Kronberg G; Reato D; Parra LC; Bikson M Brain Stimul; 2021; 14(1):55-65. PubMed ID: 33186778 [TBL] [Abstract][Full Text] [Related]
17. Improving the Effect of Transcranial Alternating Current Stimulation (tACS): A Systematic Review. Wu L; Liu T; Wang J Front Hum Neurosci; 2021; 15():652393. PubMed ID: 34163340 [TBL] [Abstract][Full Text] [Related]
18. Improved alpha-beta power reduction via combined electrical and ultrasonic stimulation in a parkinsonian cortex-basal ganglia-thalamus computational model. Tarnaud T; Joseph W; Schoeters R; Martens L; Tanghe E J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34874304 [No Abstract] [Full Text] [Related]
19. Multiscale Computational Model Reveals Nerve Response in a Mouse Model for Temporal Interference Brain Stimulation. Gomez-Tames J; Asai A; Hirata A Front Neurosci; 2021; 15():684465. PubMed ID: 34276293 [TBL] [Abstract][Full Text] [Related]
20. EMvelop stimulation: minimally invasive deep brain stimulation using temporally interfering electromagnetic waves. Ahsan F; Chi T; Cho R; Sheth SA; Goodman W; Aazhang B J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35700717 [No Abstract] [Full Text] [Related] [Next] [New Search]