These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36777796)

  • 1. Fractional telegraph equation under moving time-harmonic impact.
    Povstenko Y; Ostoja-Starzewski M
    Int J Heat Mass Transf; 2022 Jan; 182():. PubMed ID: 36777796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doppler effect described by the solutions of the Cattaneo telegraph equation.
    Povstenko Y; Ostoja-Starzewski M
    Acta Mech; 2021 Feb; 232(2):725-740. PubMed ID: 33896941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axisymmetric Fractional Diffusion with Mass Absorption in a Circle under Time-Harmonic Impact.
    Povstenko Y; Kyrylych T
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient numerical method for a time-fractional telegraph equation.
    Huang J; Cen Z; Xu A
    Math Biosci Eng; 2022 Mar; 19(5):4672-4689. PubMed ID: 35430834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional thermoelasticity problem for an infinite solid with a penny-shaped crack under prescribed heat flux across its surfaces.
    Povstenko Y; Kyrylych T
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2172):20190289. PubMed ID: 32389083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-Fractional Diffusion with Mass Absorption in a Half-Line Domain due to Boundary Value of Concentration Varying Harmonically in Time.
    Povstenko Y; Kyrylych T
    Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solitary wave solutions of the time fractional Benjamin Bona Mahony Burger equation.
    Pavani K; Raghavendar K; Aruna K
    Sci Rep; 2024 Jun; 14(1):14596. PubMed ID: 38918464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution of fractional bioheat equation in terms of Fox's H-function.
    Damor RS; Kumar S; Shukla AK
    Springerplus; 2016; 5():111. PubMed ID: 26885464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation of solution to fractional order partial reaction diffusion equations.
    Gul H; Alrabaiah H; Ali S; Shah K; Muhammad S
    J Adv Res; 2020 Sep; 25():31-38. PubMed ID: 32922971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical solution of fractional boundary value problem with caputo-fabrizio and its fractional integral.
    Moumen Bekkouche M; Mansouri I; Ahmed AAA
    J Appl Math Comput; 2022; 68(6):4305-4316. PubMed ID: 35136391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental solution of the time-space bi-fractional diffusion equation with a kinetic source term for anomalous transport.
    Allagui A; Paradezhenko G; Pervishko A; Yudin D; Benaoum H
    Sci Rep; 2024 Jun; 14(1):12886. PubMed ID: 38839840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An External Circular Crack in an Infinite Solid under Axisymmetric Heat Flux Loading in the Framework of Fractional Thermoelasticity.
    Povstenko Y; Kyrylych T; Woźna-Szcześniak B; Kawa R; Yatsko A
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving Pythagorean fuzzy partial fractional diffusion model using the Laplace and Fourier transforms.
    Akram M; Ihsan T
    Granul Comput; 2023; 8(4):689-707. PubMed ID: 38625322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subdiffusion equation with fractional Caputo time derivative with respect to another function in modeling transition from ordinary subdiffusion to superdiffusion.
    Kosztołowicz T
    Phys Rev E; 2023 Jun; 107(6-1):064103. PubMed ID: 37464604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fractional Single-Phase-Lag Model of Heat Conduction for Describing Propagation of the Maximum Temperature in a Finite Medium.
    Kukla S; Siedlecka U
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Investigation of Fractional Bagley-Torvik Equation.
    Zafar AA; Kudra G; Awrejcewicz J
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative.
    Baleanu D; Mohammadi H; Rezapour S
    Adv Differ Equ; 2020; 2020(1):299. PubMed ID: 32572336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical solution of fuzzy heat problem in two-dimensional case under Caputo-type fractional derivative.
    Nadeem M; Yilin C; Kumar D; Alsayyad Y
    PLoS One; 2024; 19(4):e0301719. PubMed ID: 38640130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat transfer analysis in a non-Newtonian hybrid nanofluid over an exponentially oscillating plate using fractional Caputo-Fabrizio derivative.
    Ul Haq S; Mahmood N; Jan SU; Sehra ; Khan I; Mohamed A
    Sci Rep; 2022 Nov; 12(1):19591. PubMed ID: 36379966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat transfer of generalized second grade fluid with MHD, radiation and exponential heating using Caputo-Fabrizio fractional derivatives approach.
    Sehra S; Noor A; Haq SU; Jan SU; Khan I; Mohamed A
    Sci Rep; 2023 Mar; 13(1):5220. PubMed ID: 36997528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.