BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 36778129)

  • 21. Mitochondria-mediated energy adaption in cancer: the H(+)-ATP synthase-geared switch of metabolism in human tumors.
    Sánchez-Aragó M; Formentini L; Cuezva JM
    Antioxid Redox Signal; 2013 Jul; 19(3):285-98. PubMed ID: 22901241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial and metabolic alterations in cancer cells.
    Di Gregorio J; Petricca S; Iorio R; Toniato E; Flati V
    Eur J Cell Biol; 2022; 101(3):151225. PubMed ID: 35453093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
    Liu Z; Sun Y; Tan S; Liu L; Hu S; Huo H; Li M; Cui Q; Yu M
    Tumour Biol; 2016 May; 37(5):6661-71. PubMed ID: 26646563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of microRNAs in mitochondria in cancer.
    Bienertova-Vasku J; Sana J; Slaby O
    Cancer Lett; 2013 Aug; 336(1):1-7. PubMed ID: 23665507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ketones and lactate increase cancer cell "stemness," driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics.
    Martinez-Outschoorn UE; Prisco M; Ertel A; Tsirigos A; Lin Z; Pavlides S; Wang C; Flomenberg N; Knudsen ES; Howell A; Pestell RG; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Apr; 10(8):1271-86. PubMed ID: 21512313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Influence of Mitochondrial Energy and 1C Metabolism on the Efficacy of Anticancer Drugs: Exploring Potential Mechanisms of Resistance.
    Franczak M; Toenshoff I; Jansen G; Smolenski RT; Giovannetti E; Peters GJ
    Curr Med Chem; 2023; 30(11):1209-1231. PubMed ID: 35366764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondria and Cancer.
    Zong WX; Rabinowitz JD; White E
    Mol Cell; 2016 Mar; 61(5):667-676. PubMed ID: 26942671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alterations in bioenergetics due to changes in mitochondrial DNA copy number.
    Qian W; Van Houten B
    Methods; 2010 Aug; 51(4):452-7. PubMed ID: 20347038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Therapeutic Targeting of Tumor Cells and Tumor Immune Microenvironment Vulnerabilities.
    Kalyanaraman B; Cheng G; Hardy M
    Front Oncol; 2022; 12():816504. PubMed ID: 35756631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis.
    Sajnani K; Islam F; Smith RA; Gopalan V; Lam AK
    Biochimie; 2017 Apr; 135():164-172. PubMed ID: 28219702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development.
    Jezek P; Plecitá-Hlavatá L; Smolková K; Rossignol R
    Int J Biochem Cell Biol; 2010 May; 42(5):604-22. PubMed ID: 19931409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. α-Lactalbumin-oleic acid complex kills tumor cells by inducing excess energy metabolism but inhibiting mRNA expression of the related enzymes.
    Fang B; Zhang M; Ge KS; Xing HZ; Ren FZ
    J Dairy Sci; 2018 Jun; 101(6):4853-4863. PubMed ID: 29550120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changing perspective on oncometabolites: from metabolic signature of cancer to tumorigenic and immunosuppressive agents.
    Corrado M; Scorrano L; Campello S
    Oncotarget; 2016 Jul; 7(29):46692-46706. PubMed ID: 27083002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of Mitochondrial Metabolism Leads to Selective Eradication of Cells Adapted to Acidic Microenvironment.
    Koncošová M; Vrzáčková N; Křížová I; Tomášová P; Rimpelová S; Dvořák A; Vítek L; Rumlová M; Ruml T; Zelenka J
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment.
    Simões RV; Serganova IS; Kruchevsky N; Leftin A; Shestov AA; Thaler HT; Sukenick G; Locasale JW; Blasberg RG; Koutcher JA; Ackerstaff E
    Neoplasia; 2015 Aug; 17(8):671-84. PubMed ID: 26408259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New insights into the bioenergetics of mitochondrial disorders using intracellular ATP reporters.
    Gajewski CD; Yang L; Schon EA; Manfredi G
    Mol Biol Cell; 2003 Sep; 14(9):3628-35. PubMed ID: 12972552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival.
    Foo BJ; Eu JQ; Hirpara JL; Pervaiz S
    Oxid Med Cell Longev; 2021; 2021():1341604. PubMed ID: 34777681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial dysfunction and cancer metastasis.
    Chen EI
    J Bioenerg Biomembr; 2012 Dec; 44(6):619-22. PubMed ID: 22892817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial metabolism-mediated redox regulation in cancer progression.
    Boese AC; Kang S
    Redox Biol; 2021 Jun; 42():101870. PubMed ID: 33509708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.