These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36778483)

  • 1. Single-cell multi-omic topic embedding reveals cell-type-specific and COVID-19 severity-related immune signatures.
    Zhou M; Zhang H; Baii Z; Mann-Krzisnik D; Wang F; Li Y
    bioRxiv; 2023 Jun; ():. PubMed ID: 36778483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell multi-omics topic embedding reveals cell-type-specific and COVID-19 severity-related immune signatures.
    Zhou M; Zhang H; Bai Z; Mann-Krzisnik D; Wang F; Li Y
    Cell Rep Methods; 2023 Aug; 3(8):100563. PubMed ID: 37671028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol to perform integrative analysis of high-dimensional single-cell multimodal data using an interpretable deep learning technique.
    Zhou M; Zhang H; Bai Z; Mann-Krzisnik D; Wang F; Li Y
    STAR Protoc; 2024 Jun; 5(2):103066. PubMed ID: 38748882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data.
    Zou G; Lin Y; Han T; Ou-Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36047285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder.
    Wang Z; Zhang Y; Yu Y; Zhang J; Liu Y; Zou Q
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning Consistency and Specificity of Cells From Single-Cell Multi-Omic Data.
    Wang H; Liu Z; Ma X
    IEEE J Biomed Health Inform; 2024 May; 28(5):3134-3145. PubMed ID: 38709615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scJVAE: A novel method for integrative analysis of multimodal single-cell data.
    Wani SA; Khan SA; Quadri SMK
    Comput Biol Med; 2023 May; 158():106865. PubMed ID: 37030268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-use deep learning method for CITE-seq and single-cell RNA-seq data integration with cell surface protein prediction and imputation.
    Lakkis J; Schroeder A; Su K; Lee MYY; Bashore AC; Reilly MP; Li M
    Nat Mach Intell; 2022 Nov; 4(11):940-952. PubMed ID: 36873621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of scATAC-Seq with scRNA-Seq Data.
    Berest I; Tangherloni A
    Methods Mol Biol; 2023; 2584():293-310. PubMed ID: 36495457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously.
    Zhang Z; Yang C; Zhang X
    Genome Biol; 2022 Jun; 23(1):139. PubMed ID: 35761403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InClust+: the deep generative framework with mask modules for multimodal data integration, imputation, and cross-modal generation.
    Wang L; Nie R; Miao X; Cai Y; Wang A; Zhang H; Zhang J; Cai J
    BMC Bioinformatics; 2024 Jan; 25(1):41. PubMed ID: 38267858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning single-cell chromatin accessibility profiles using meta-analytic marker genes.
    Kawaguchi RK; Tang Z; Fischer S; Rajesh C; Tripathy R; Koo PK; Gillis J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36549922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking automated cell type annotation tools for single-cell ATAC-seq data.
    Wang Y; Sun X; Zhao H
    Front Genet; 2022; 13():1063233. PubMed ID: 36583014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space.
    Xiong L; Tian K; Li Y; Ning W; Gao X; Zhang QC
    Nat Commun; 2022 Oct; 13(1):6118. PubMed ID: 36253379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IOBR: Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures.
    Zeng D; Ye Z; Shen R; Yu G; Wu J; Xiong Y; Zhou R; Qiu W; Huang N; Sun L; Li X; Bin J; Liao Y; Shi M; Liao W
    Front Immunol; 2021; 12():687975. PubMed ID: 34276676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss.
    Liu C; Wang L; Liu Z
    BMC Bioinformatics; 2023 Jan; 24(1):5. PubMed ID: 36600199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types.
    Wu W; Zhang W; Ma X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-jeopardy: scRNA-seq doublet/multiplet detection using multi-omic profiling.
    Sun B; Bugarin-Estrada E; Overend LE; Walker CE; Tucci FA; Bashford-Rogers RJM
    Cell Rep Methods; 2021 May; 1(1):None. PubMed ID: 34278374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual Genomics Analysis Studio as a Tool to Analyze Multiomic Data.
    Hertzman RJ; Deshpande P; Leary S; Li Y; Ram R; Chopra A; Cooper D; Watson M; Palubinsky AM; Mallal S; Gibson A; Phillips EJ
    Front Genet; 2021; 12():642012. PubMed ID: 34220932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.