These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data. Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142 [TBL] [Abstract][Full Text] [Related]
27. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network. Wang J; Xia J; Wang H; Su Y; Zheng CH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401 [TBL] [Abstract][Full Text] [Related]
29. MulCNN: An efficient and accurate deep learning method based on gene embedding for cell type identification in single-cell RNA-seq data. Jiao L; Ren Y; Wang L; Gao C; Wang S; Song T Front Genet; 2023; 14():1179859. PubMed ID: 37082202 [TBL] [Abstract][Full Text] [Related]
30. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
31. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data. Gan Y; Chen Y; Xu G; Guo W; Zou G Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714 [TBL] [Abstract][Full Text] [Related]
32. Unsupervised neural network for single cell Multi-omics INTegration (UMINT): an application to health and disease. Maitra C; Seal DB; Das V; De RK Front Mol Biosci; 2023; 10():1184748. PubMed ID: 37293552 [TBL] [Abstract][Full Text] [Related]
33. scGMAAE: Gaussian mixture adversarial autoencoders for diversification analysis of scRNA-seq data. Wang HY; Zhao JP; Zheng CH; Su YS Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592058 [TBL] [Abstract][Full Text] [Related]
34. Multi-omic single cell sequencing: Overview and opportunities for kidney disease therapeutic development. Pregizer S; Vreven T; Mathur M; Robinson LN Front Mol Biosci; 2023; 10():1176856. PubMed ID: 37091871 [TBL] [Abstract][Full Text] [Related]
35. scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning. Lin Y; Wu TY; Wan S; Yang JYH; Wong WH; Wang YXR Nat Biotechnol; 2022 May; 40(5):703-710. PubMed ID: 35058621 [TBL] [Abstract][Full Text] [Related]
36. Gene Regulatory Network Modeling Using Single-Cell Multi-Omics in Plants. Chau T; Timilsena P; Li S Methods Mol Biol; 2023; 2698():259-275. PubMed ID: 37682480 [TBL] [Abstract][Full Text] [Related]
37. Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data. Xu F; Wang S; Dai X; Mundra PA; Zheng J Methods; 2021 May; 189():65-73. PubMed ID: 33039573 [TBL] [Abstract][Full Text] [Related]
38. CITEMO Hu H; Liu R; Zhao C; Lu Y; Xiong Y; Chen L; Jin J; Ma Y; Su J; Yu Z; Cheng F; Ye F; Liu L; Zhao Q; Shuai J RNA Biol; 2022 Jan; 19(1):290-304. PubMed ID: 35130112 [TBL] [Abstract][Full Text] [Related]
39. Translator: A Xu S; Skarica M; Hwang A; Dai Y; Lee C; Girgenti MJ; Zhang J J Comput Biol; 2022 Jul; 29(7):619-633. PubMed ID: 35584295 [TBL] [Abstract][Full Text] [Related]
40. Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification. Ouyang D; Liang Y; Li L; Ai N; Lu S; Yu M; Liu X; Xie S Comput Biol Med; 2023 Sep; 164():107303. PubMed ID: 37586201 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]