These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 36778593)
1. Effect of transferrin glycation induced by high glucose on HK-2 cells Ma Y; Zhou Q; Zhao P; Lv X; Gong C; Gao J; Liu J Front Endocrinol (Lausanne); 2022; 13():1009507. PubMed ID: 36778593 [TBL] [Abstract][Full Text] [Related]
2. Protective effects of gliclazide on high glucose and AGEs-induced damage of glomerular mesangial cells and renal tubular epithelial cells via inhibiting RAGE-p22phox-NF-kB pathway. Yang PY; Li PC; Feng B Eur Rev Med Pharmacol Sci; 2019 Oct; 23(20):9099-9107. PubMed ID: 31696501 [TBL] [Abstract][Full Text] [Related]
3. The glycation site specificity of human serum transferrin is a determinant for transferrin's functional impairment under elevated glycaemic conditions. Silva AM; Sousa PR; Coimbra JT; Brás NF; Vitorino R; Fernandes PA; Ramos MJ; Rangel M; Domingues P Biochem J; 2014 Jul; 461(1):33-42. PubMed ID: 24716439 [TBL] [Abstract][Full Text] [Related]
4. Non-Enzymatic Glycation of Transferrin and Diabetes Mellitus. Ma Y; Cai J; Wang Y; Liu J; Fu S Diabetes Metab Syndr Obes; 2021; 14():2539-2548. PubMed ID: 34135606 [TBL] [Abstract][Full Text] [Related]
5. Modulation of transferrin receptor mRNA by transferrin-gallium in human myeloid HL60 and lymphoid CCRF-CEM leukaemic cells. Ul-Haq R; Chitambar CR Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):873-7. PubMed ID: 8379943 [TBL] [Abstract][Full Text] [Related]
6. Effects of in vitro glycation on Fe3+ binding and Fe3+ isoforms of transferrin. Van Campenhout A; Van Campenhout C; Lagrou AR; Manuel-Y-Keenoy B Clin Chem; 2004 Sep; 50(9):1640-9. PubMed ID: 15231685 [TBL] [Abstract][Full Text] [Related]
7. Nonenzymatic glycation of transferrin: decrease of iron-binding capacity and increase of oxygen radical production. Fujimoto S; Kawakami N; Ohara A Biol Pharm Bull; 1995 Mar; 18(3):396-400. PubMed ID: 7550090 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the defect in a variant of HL-60 promyelocytic leukemia cells with reduced transferrin receptor expression. Ishiguro K; Ho PT; Sartorelli AC Somat Cell Mol Genet; 1992 Jan; 18(1):45-63. PubMed ID: 1546369 [TBL] [Abstract][Full Text] [Related]
9. Transcytosis of GCSF-transferrin across rat alveolar epithelial cell monolayers. Widera A; Kim KJ; Crandall ED; Shen WC Pharm Res; 2003 Aug; 20(8):1231-8. PubMed ID: 12948021 [TBL] [Abstract][Full Text] [Related]
10. Proteasomal degradation of glycated proteins depends on substrate unfolding: Preferred degradation of moderately modified myoglobin. Raupbach J; Ott C; Koenig J; Grune T Free Radic Biol Med; 2020 May; 152():516-524. PubMed ID: 31760091 [TBL] [Abstract][Full Text] [Related]
11. Tyrphostin-8 enhances transferrin receptor-mediated transcytosis in Caco-2- cells and inreases hypoglycemic effect of orally administered insulin-transferrin conjugate in diabetic rats. Xia CQ; Shen WC Pharm Res; 2001 Feb; 18(2):191-5. PubMed ID: 11405290 [TBL] [Abstract][Full Text] [Related]
12. Advanced glycation end products (AGEs) increase renal lipid accumulation: a pathogenic factor of diabetic nephropathy (DN). Yuan Y; Sun H; Sun Z Lipids Health Dis; 2017 Jun; 16(1):126. PubMed ID: 28659153 [TBL] [Abstract][Full Text] [Related]
13. Protective effect of thymoquinone on glycation of human myoglobin induced by d-ribose. Liu JJ; Wang ZY; Jiang BB; Gao SQ; Lin YW Int J Biol Macromol; 2023 Dec; 253(Pt 4):127016. PubMed ID: 37741485 [TBL] [Abstract][Full Text] [Related]
14. [Preliminary evaluation and mechanism of adipose-derived stem cell transplantation from allogenic diabetic rats in the treatment of diabetic rat wounds]. Dong JY; Gong JH; Ji XY; Tian M; Liu YK; Qing C; Lu SL; Song F Zhonghua Shao Shang Za Zhi; 2019 Sep; 35(9):645-654. PubMed ID: 31594182 [No Abstract] [Full Text] [Related]
15. Detection of oxidized and glycated proteins in clinical samples using mass spectrometry--a user's perspective. Thornalley PJ; Rabbani N Biochim Biophys Acta; 2014 Feb; 1840(2):818-29. PubMed ID: 23558060 [TBL] [Abstract][Full Text] [Related]
16. HMGB1 Enhances the AGE-Induced Expression of CTGF and TGF-β via RAGE-Dependent Signaling in Renal Tubular Epithelial Cells. Cheng M; Liu H; Zhang D; Liu Y; Wang C; Liu F; Chen J Am J Nephrol; 2015; 41(3):257-66. PubMed ID: 25924590 [TBL] [Abstract][Full Text] [Related]
17. Transferrin-bound and transferrin free iron uptake by cultured rat astrocytes. Qian ZM; Liao QK; To Y; Ke Y; Tsoi YK; Wang GF; Ho KP Cell Mol Biol (Noisy-le-grand); 2000 May; 46(3):541-8. PubMed ID: 10872741 [TBL] [Abstract][Full Text] [Related]
18. Increased expression of transferrin receptor on membrane of erythroblasts in strenuously exercised rats. Qian ZM; Xiao DS; Tang PL; Yao FY; Liao QK J Appl Physiol (1985); 1999 Aug; 87(2):523-9. PubMed ID: 10444608 [TBL] [Abstract][Full Text] [Related]
19. Gene expression of transferrin and transferrin receptor in brains of control vs. iron-deficient rats. Han J; Day JR; Connor JR; Beard JL Nutr Neurosci; 2003 Feb; 6(1):1-10. PubMed ID: 12608731 [TBL] [Abstract][Full Text] [Related]
20. A comparative study of iron-related metabolic parameters in the eye of three animal species. Vázquez-Quiñones LE; García-Castiñeiras S P R Health Sci J; 2007 Dec; 26(4):373-83. PubMed ID: 18246966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]