BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 36778600)

  • 1. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer.
    Sun Q; Wu J; Zhu G; Li T; Zhu X; Ni B; Xu B; Ma X; Li J
    Front Endocrinol (Lausanne); 2022; 13():1089918. PubMed ID: 36778600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy.
    Wang G; Wang JJ; Yin PH; Xu K; Wang YZ; Shi F; Gao J; Fu XL
    J Cell Physiol; 2018 Jan; 234(1):348-368. PubMed ID: 30069931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.
    Guido C; Whitaker-Menezes D; Capparelli C; Balliet R; Lin Z; Pestell RG; Howell A; Aquila S; Andò S; Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Aug; 11(16):3019-35. PubMed ID: 22874531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate-induced protein lactylation: A bridge between epigenetics and metabolic reprogramming in cancer.
    Wang T; Ye Z; Li Z; Jing DS; Fan GX; Liu MQ; Zhuo QF; Ji SR; Yu XJ; Xu XW; Qin Y
    Cell Prolif; 2023 Oct; 56(10):e13478. PubMed ID: 37060186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate: A regulator of immune microenvironment and a clinical prognosis indicator in colorectal cancer.
    Zhu D; Jiang Y; Cao H; Yang J; Shu Y; Feng H; Yang X; Sun X; Shao M
    Front Immunol; 2022; 13():876195. PubMed ID: 36091047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate-Lactylation Hands between Metabolic Reprogramming and Immunosuppression.
    Chen L; Huang L; Gu Y; Cang W; Sun P; Xiang Y
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic inflammation confers to the metabolic reprogramming associated with tumorigenesis of colorectal cancer.
    Qu D; Shen L; Liu S; Li H; Ma Y; Zhang R; Wu K; Yao L; Li J; Zhang J
    Cancer Biol Ther; 2017 Apr; 18(4):237-244. PubMed ID: 28278072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic reprogramming links chronic intestinal inflammation and the oncogenic transformation in colorectal tumorigenesis.
    Zhang S; Cao L; Li Z; Qu D
    Cancer Lett; 2019 May; 450():123-131. PubMed ID: 30851417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Rewiring in Cancer: Small Molecule Inhibitors in Colorectal Cancer Therapy.
    Masci D; Puxeddu M; Silvestri R; La Regina G
    Molecules; 2024 May; 29(9):. PubMed ID: 38731601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy.
    Nenkov M; Ma Y; Gaßler N; Chen Y
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34200820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment.
    Hayes C; Donohoe CL; Davern M; Donlon NE
    Cancer Lett; 2021 Mar; 500():75-86. PubMed ID: 33347908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Immune Consequences of Lactate in the Tumor Microenvironment.
    Harmon C; O'Farrelly C; Robinson MW
    Adv Exp Med Biol; 2020; 1259():113-124. PubMed ID: 32578174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of HMGB1 in tumor-associated macrophages induced by tumor cell-derived lactate further promotes colorectal cancer progression.
    Gao X; Zhou S; Qin Z; Li D; Zhu Y; Ma D
    J Transl Med; 2023 Jan; 21(1):53. PubMed ID: 36709284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer.
    Dong S; Liang S; Cheng Z; Zhang X; Luo L; Li L; Zhang W; Li S; Xu Q; Zhong M; Zhu J; Zhang G; Hu S
    J Exp Clin Cancer Res; 2022 Jan; 41(1):15. PubMed ID: 34998404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research progress of hyperthermia in tumor therapy by influencing metabolic reprogramming of tumor cells.
    Yang Y; Huangfu L; Li H; Yang D
    Int J Hyperthermia; 2023; 40(1):2270654. PubMed ID: 37871910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Pathways Regulating Colorectal Cancer: A Potential Therapeutic Approach.
    Zafari N; Velayati M; Damavandi S; Pourali G; Mobarhan MG; Nassiri M; Hassanian SM; Khazaei M; Ferns GA; Avan A
    Curr Pharm Des; 2022; 28(36):2995-3009. PubMed ID: 36154599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory ASIC2-mediated calcineurin/NFAT against colorectal cancer by triterpenoids extracted from Rhus chinensis Mill.
    Wang G; Wang YZ; Yu Y; Wang JJ
    J Ethnopharmacol; 2019 May; 235():255-267. PubMed ID: 30772482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer.
    Wang J; Wang H; Liu A; Fang C; Hao J; Wang Z
    Oncotarget; 2015 Aug; 6(23):19456-68. PubMed ID: 26062441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.