BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 36778600)

  • 41. Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells.
    Amorim R; Pinheiro C; Miranda-Gonçalves V; Pereira H; Moyer MP; Preto A; Baltazar F
    Cancer Lett; 2015 Aug; 365(1):68-78. PubMed ID: 26021766
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer.
    Ishihara S; Hata K; Hirose K; Okui T; Toyosawa S; Uzawa N; Nishimura R; Yoneda T
    Sci Rep; 2022 Apr; 12(1):6261. PubMed ID: 35428832
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lactate promotes metastasis of normoxic colorectal cancer stem cells through PGC-1α-mediated oxidative phosphorylation.
    Liu S; Zhao H; Hu Y; Yan C; Mi Y; Li X; Tao D; Qin J
    Cell Death Dis; 2022 Jul; 13(7):651. PubMed ID: 35896535
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling.
    Sun K; Tang S; Hou Y; Xi L; Chen Y; Yin J; Peng M; Zhao M; Cui X; Liu M
    EBioMedicine; 2019 Mar; 41():370-383. PubMed ID: 30799198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. B7-H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2.
    Shi T; Ma Y; Cao L; Zhan S; Xu Y; Fu F; Liu C; Zhang G; Wang Z; Wang R; Lu H; Lu B; Chen W; Zhang X
    Cell Death Dis; 2019 Apr; 10(4):308. PubMed ID: 30952834
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma.
    Reuss AM; Groos D; Buchfelder M; Savaskan N
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073734
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET and EGFR Targeted Therapies.
    Apicella M; Giannoni E; Fiore S; Ferrari KJ; Fernández-Pérez D; Isella C; Granchi C; Minutolo F; Sottile A; Comoglio PM; Medico E; Pietrantonio F; Volante M; Pasini D; Chiarugi P; Giordano S; Corso S
    Cell Metab; 2018 Dec; 28(6):848-865.e6. PubMed ID: 30174307
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolic reprogramming by dual-targeting biomimetic nanoparticles for enhanced tumor chemo-immunotherapy.
    Zang S; Huang K; Li J; Ren K; Li T; He X; Tao Y; He J; Dong Z; Li M; He Q
    Acta Biomater; 2022 Aug; 148():181-193. PubMed ID: 35649505
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells.
    Pan T; Liu J; Xu S; Yu Q; Wang H; Sun H; Wu J; Zhu Y; Zhou J; Zhu Y
    Theranostics; 2020; 10(2):516-536. PubMed ID: 31903135
    [No Abstract]   [Full Text] [Related]  

  • 50. Tumor Microenvironment: Lactic Acid Promotes Tumor Development.
    Gao Y; Zhou H; Liu G; Wu J; Yuan Y; Shang A
    J Immunol Res; 2022; 2022():3119375. PubMed ID: 35733921
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic reprogramming in the arsenic carcinogenesis.
    Ruan Y; Fang X; Guo T; Liu Y; Hu Y; Wang X; Hu Y; Gao L; Li Y; Pi J; Xu Y
    Ecotoxicol Environ Saf; 2022 Jan; 229():113098. PubMed ID: 34952379
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor.
    Wei L; Zhou Y; Yao J; Qiao C; Ni T; Guo R; Guo Q; Lu N
    Oncotarget; 2015 Jun; 6(18):16198-214. PubMed ID: 25938544
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of exosomes in transferring chemoresistance through modulation of cancer glycolytic cell metabolism.
    Vahabi M; Comandatore A; Franczak MA; Smolenski RT; Peters GJ; Morelli L; Giovannetti E
    Cytokine Growth Factor Rev; 2023 Oct; 73():163-172. PubMed ID: 37541790
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exosomes Derived from Human Primary and Metastatic Colorectal Cancer Cells Contribute to Functional Heterogeneity of Activated Fibroblasts by Reprogramming Their Proteome.
    Rai A; Greening DW; Chen M; Xu R; Ji H; Simpson RJ
    Proteomics; 2019 Apr; 19(8):e1800148. PubMed ID: 30582284
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer.
    Deng F; Zhou R; Lin C; Yang S; Wang H; Li W; Zheng K; Lin W; Li X; Yao X; Pan M; Zhao L
    Theranostics; 2019; 9(4):1001-1014. PubMed ID: 30867812
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    Ratter JM; Rooijackers HMM; Hooiveld GJ; Hijmans AGM; de Galan BE; Tack CJ; Stienstra R
    Front Immunol; 2018; 9():2564. PubMed ID: 30483253
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells.
    Straus DS
    Mol Cancer; 2013 Jul; 12():78. PubMed ID: 23866118
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The crosstalking of lactate-Histone lactylation and tumor.
    Rong Y; Dong F; Zhang G; Tang M; Zhao X; Zhang Y; Tao P; Cai H
    Proteomics Clin Appl; 2023 Sep; 17(5):e2200102. PubMed ID: 36853081
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cross-talk of four types of RNA modification writers defines tumor microenvironment and pharmacogenomic landscape in colorectal cancer.
    Chen H; Yao J; Bao R; Dong Y; Zhang T; Du Y; Wang G; Ni D; Xun Z; Niu X; Ye Y; Li HB
    Mol Cancer; 2021 Feb; 20(1):29. PubMed ID: 33557837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.