These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Nanobody-Functionalized Cellulose for Capturing SARS-CoV-2. Sun X; Yang S; Al-Dossary AA; Broitman S; Ni Y; Guan M; Yang M; Li J Appl Environ Microbiol; 2022 Mar; 88(5):e0230321. PubMed ID: 34985974 [TBL] [Abstract][Full Text] [Related]
4. Performance evaluation of virus concentration methods for implementing SARS-CoV-2 wastewater based epidemiology emphasizing quick data turnaround. Juel MAI; Stark N; Nicolosi B; Lontai J; Lambirth K; Schlueter J; Gibas C; Munir M Sci Total Environ; 2021 Dec; 801():149656. PubMed ID: 34418628 [TBL] [Abstract][Full Text] [Related]
5. Comparative Assessment of Filtration- and Precipitation-Based Methods for the Concentration of SARS-CoV-2 and Other Viruses from Wastewater. Farkas K; Pellett C; Alex-Sanders N; Bridgman MTP; Corbishley A; Grimsley JMS; Kasprzyk-Hordern B; Kevill JL; Pântea I; Richardson-O'Neill IS; Lambert-Slosarska K; Woodhall N; Jones DL Microbiol Spectr; 2022 Aug; 10(4):e0110222. PubMed ID: 35950856 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient and sensitive membrane-based concentration process allows quantification, surveillance, and sequencing of viruses in large volumes of wastewater. El Soufi G; Di Jorio L; Gerber Z; Cluzel N; Van Assche J; Delafoy D; Olaso R; Daviaud C; Loustau T; Schwartz C; Trebouet D; Hernalsteens O; Marechal V; Raffestin S; Rousset D; Van Lint C; Deleuze JF; Boni M; ; Rohr O; Villain-Gambier M; Wallet C Water Res; 2024 Feb; 249():120959. PubMed ID: 38070350 [TBL] [Abstract][Full Text] [Related]
7. Comparative assessment of Nanotrap and polyethylene glycol-based virus concentration in wastewater samples. Farkas K; Kevill JL; Williams RC; Pântea I; Ridding N; Lambert-Slosarska K; Woodhall N; Grimsley JMS; Wade MJ; Singer AC; Weightman AJ; Cross G; Jones DL FEMS Microbes; 2024; 5():xtae007. PubMed ID: 38544682 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of two rapid ultrafiltration-based methods for SARS-CoV-2 concentration from wastewater. Forés E; Bofill-Mas S; Itarte M; Martínez-Puchol S; Hundesa A; Calvo M; Borrego CM; Corominas LL; Girones R; Rusiñol M Sci Total Environ; 2021 May; 768():144786. PubMed ID: 33429117 [TBL] [Abstract][Full Text] [Related]
9. Curli Amyloid Fibers in Escherichia coli Biofilms: The Influence of Water Availability on their Structure and Functional Properties. Siri M; Mangiarotti A; Vázquez-Dávila M; Bidan CM Macromol Biosci; 2024 Feb; 24(2):e2300234. PubMed ID: 37776075 [TBL] [Abstract][Full Text] [Related]
11. Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant. Verkhivker G Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216287 [TBL] [Abstract][Full Text] [Related]
12. Development of a magnetic nanoparticle-based method for concentrating SARS-CoV-2 in wastewater. Angga MS; Malla B; Raya S; Kitano A; Xie X; Saitoh H; Ohnishi N; Haramoto E Sci Total Environ; 2022 Nov; 848():157613. PubMed ID: 35901898 [TBL] [Abstract][Full Text] [Related]
13. Assessment of two types of passive sampler for the efficient recovery of SARS-CoV-2 and other viruses from wastewater. Kevill JL; Lambert-Slosarska K; Pellett C; Woodhall N; Richardson-O'Neill I; Pântea I; Alex-Sanders N; Farkas K; Jones DL Sci Total Environ; 2022 Sep; 838(Pt 4):156580. PubMed ID: 35690190 [TBL] [Abstract][Full Text] [Related]
14. Assessment of two volumetrically different concentration approaches to improve sensitivities for SARS-CoV-2 detection during wastewater monitoring. McMinn BR; Korajkic A; Pemberton AC; Kelleher J; Ahmed W; Villegas EN; Oshima K J Virol Methods; 2023 Jan; 311():114645. PubMed ID: 36332716 [TBL] [Abstract][Full Text] [Related]
15. RNA Viromics of Southern California Wastewater and Detection of SARS-CoV-2 Single-Nucleotide Variants. Rothman JA; Loveless TB; Kapcia J; Adams ED; Steele JA; Zimmer-Faust AG; Langlois K; Wanless D; Griffith M; Mao L; Chokry J; Griffith JF; Whiteson KL Appl Environ Microbiol; 2021 Nov; 87(23):e0144821. PubMed ID: 34550753 [TBL] [Abstract][Full Text] [Related]
16. Zhu X; An K; Yan J; Xu P; Bai C Front Biosci (Landmark Ed); 2023 Apr; 28(4):67. PubMed ID: 37114534 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of rapid concentration methods for the recovery of SARS-CoV-2 and quantification of human enteric viruses and a sewage-associated marker gene in untreated wastewater. Ahmed W; Bivins A; Simpson SL; Smith WJM; Metcalfe S; McMinn B; Symonds EM; Korajkic A Sci Total Environ; 2021 Dec; 799():149386. PubMed ID: 34388890 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of Respiratory Syncytial Virus, Rhinovirus, SARS-CoV-2, and F+ Bacteriophage MS2 RNA onto Wastewater Solids from Raw Wastewater. Roldan-Hernandez L; Boehm AB Environ Sci Technol; 2023 Sep; 57(36):13346-13355. PubMed ID: 37647137 [TBL] [Abstract][Full Text] [Related]
19. Applicability of polyethylene glycol precipitation followed by acid guanidinium thiocyanate-phenol-chloroform extraction for the detection of SARS-CoV-2 RNA from municipal wastewater. Torii S; Furumai H; Katayama H Sci Total Environ; 2021 Feb; 756():143067. PubMed ID: 33131851 [TBL] [Abstract][Full Text] [Related]