BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 36778693)

  • 1. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment.
    Sharma JK; Kumar N; Singh NP; Santal AR
    Front Plant Sci; 2023; 14():1076876. PubMed ID: 36778693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technologies for removing heavy metal from contaminated soils on farmland: A review.
    Lin H; Wang Z; Liu C; Dong Y
    Chemosphere; 2022 Oct; 305():135457. PubMed ID: 35753427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach.
    Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F
    Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature.
    Oladoye PO; Olowe OM; Asemoloye MD
    Chemosphere; 2022 Feb; 288(Pt 2):132555. PubMed ID: 34653492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources.
    Yadav R; Singh G; Santal AR; Singh NP
    J Environ Manage; 2023 Jun; 336():117730. PubMed ID: 36921476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of phytoremediation capability of French marigold (
    Biswal B; Singh SK; Patra A; Mohapatra KK
    Int J Phytoremediation; 2022; 24(9):945-954. PubMed ID: 34634952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach.
    Priya AK; Muruganandam M; Ali SS; Kornaros M
    Toxics; 2023 May; 11(5):. PubMed ID: 37235237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of Biochar on Bioremediation/Phytoremediation Potential of Metal-Contaminated Soils.
    Narayanan M; Ma Y
    Front Microbiol; 2022; 13():929730. PubMed ID: 35756072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies.
    Rai GK; Bhat BA; Mushtaq M; Tariq L; Rai PK; Basu U; Dar AA; Islam ST; Dar TUH; Bhat JA
    Physiol Plant; 2021 Sep; 173(1):287-304. PubMed ID: 33864701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India-A Review.
    Barathi S; Lee J; Venkatesan R; Vetcher AA
    Plants (Basel); 2023 Nov; 12(22):. PubMed ID: 38005713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges.
    Shen X; Dai M; Yang J; Sun L; Tan X; Peng C; Ali I; Naz I
    Chemosphere; 2022 Mar; 291(Pt 3):132979. PubMed ID: 34801572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ phytoremediation of heavy metal-contaminated soil and groundwater: a green inventive approach.
    Shikha D; Singh PK
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4104-4124. PubMed ID: 33210252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land.
    Yan A; Wang Y; Tan SN; Mohd Yusof ML; Ghosh S; Chen Z
    Front Plant Sci; 2020; 11():359. PubMed ID: 32425957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review.
    Pandey J; Verma RK; Singh S
    Int J Phytoremediation; 2019; 21(5):405-418. PubMed ID: 30656974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Role and Mechanism of Low Molecular-Weight-Organic Acids in Enhanced Phytoremediation of Heavy Metal Contaminated Soil].
    Fang ZG; Xie JT; Yang Q; Lu YZ; Huang H; Zhu YX; Yin SM; Wu XT; Du ST
    Huan Jing Ke Xue; 2022 Oct; 43(10):4669-4678. PubMed ID: 36224152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation.
    Fumagalli P; Comolli R; Ferrè C; Ghiani A; Gentili R; Citterio S
    J Environ Manage; 2014 Dec; 145():35-42. PubMed ID: 24992047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.