These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36779284)

  • 1. Rapid smartphone-based assays for pesticides inspection in foods: current status, limitations, and future directions.
    Yun P; Jinorose M; Devahastin S
    Crit Rev Food Sci Nutr; 2024 Jun; 64(18):6251-6271. PubMed ID: 36779284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review.
    Xu ML; Gao Y; Han XX; Zhao B
    J Agric Food Chem; 2017 Aug; 65(32):6719-6726. PubMed ID: 28726388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Establishment of simultaneous determination method of pesticides in foods].
    Tonogai Y
    Shokuhin Eiseigaku Zasshi; 2004 Aug; 45(4):J219-21. PubMed ID: 15568476
    [No Abstract]   [Full Text] [Related]  

  • 4. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method.
    Hu B; Sun DW; Pu H; Wei Q
    Talanta; 2020 Sep; 217():120998. PubMed ID: 32498854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated surface-enhanced Raman spectroscopy and convolutional neural network for quantitative and qualitative analysis of pesticide residues on pericarp.
    Wang X; Jiang S; Liu Z; Sun X; Zhang Z; Quan X; Zhang T; Kong W; Yang X; Li Y
    Food Chem; 2024 May; 440():138214. PubMed ID: 38150903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Multi-Residue Detection Methods for Pesticides and Veterinary Drugs.
    Jia M; E Z; Zhai F; Bing X
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32784605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides.
    Cheng N; Song Y; Fu Q; Du D; Luo Y; Wang Y; Xu W; Lin Y
    Biosens Bioelectron; 2018 Oct; 117():75-83. PubMed ID: 29886189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guidelines for the validation of qualitative multi-residue methods used to detect pesticides in food.
    Mol HG; Reynolds SL; Fussell RJ; Stajnbaher D
    Drug Test Anal; 2012 Aug; 4 Suppl 1():10-6. PubMed ID: 22851355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pt-Ni(OH)
    Cheng N; Shi Q; Zhu C; Li S; Lin Y; Du D
    Biosens Bioelectron; 2019 Oct; 142():111498. PubMed ID: 31319328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food safety in Thailand. 3: Pesticide residues detected in mangosteen (Garcinia mangostana L.), queen of fruits.
    Phopin K; Wanwimolruk S; Prachayasittikul V
    J Sci Food Agric; 2017 Feb; 97(3):832-840. PubMed ID: 27185538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate mass fragment library for rapid analysis of pesticides on produce using ambient pressure desorption ionization with high-resolution mass spectrometry.
    Kern SE; Lin LA; Fricke FL
    J Am Soc Mass Spectrom; 2014 Aug; 25(8):1482-8. PubMed ID: 24845356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy.
    Dowgiallo AM; Guenther DA
    J Agric Food Chem; 2019 Nov; 67(46):12642-12651. PubMed ID: 31188587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating transformer-based machine learning with SERS technology for the analysis of hazardous pesticides in spinach.
    Hajikhani M; Hegde A; Snyder J; Cheng J; Lin M
    J Hazard Mater; 2024 May; 470():134208. PubMed ID: 38593663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary exposure of Hong Kong adults to pesticide residues: results of the first Hong Kong Total Diet Study.
    Wong WW; Yau AT; Chung SW; Lam CH; Ma S; Ho YY; Xiao Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(5):852-71. PubMed ID: 24588687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A perspective on high throughput analysis of pesticide residues in foods.
    Zhang K; Wong JW; Wang PG
    Se Pu; 2011 Jul; 29(7):587-93. PubMed ID: 22097782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of gold nanostars for the duplex detection of pesticide residues in grapes using SERS.
    Zhai K; Sun L; Nguyen THD; Lin M
    J Food Sci; 2024 Apr; 89(4):2512-2521. PubMed ID: 38380711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Fabrication of Yttrium Ferrite Garnet-Embedded Graphitic Carbon Nitride: A Sensitive Electrocatalyst for Smartphone-Enabled Point-of-Care Pesticide (Mesotrione) Analysis in Food Samples.
    Rajaji U; Chinnapaiyan S; Chen SM; Govindasamy M; Oliveira Filho JI; Khushaim W; Mani V
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24865-24876. PubMed ID: 34009929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace analysis of organic compounds in foods with surface-enhanced Raman spectroscopy: Methodology, progress, and challenges.
    Huang Y; Wang X; Lai K; Fan Y; Rasco BA
    Compr Rev Food Sci Food Saf; 2020 Mar; 19(2):622-642. PubMed ID: 33325168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [High-throughput screening of multi-pesticide residues in animal-derived foods by QuEChERS-online gel permeation chromatography-gas chromatography-tandem mass spectrometry].
    Li J; Ju X; Wang YL; Tian QY; Liang XQ; Li HX; Liu YM
    Se Pu; 2023 Jul; 41(7):610-621. PubMed ID: 37387282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in immunosensors for pesticides.
    Fang L; Liao X; Jia B; Shi L; Kang L; Zhou L; Kong W
    Biosens Bioelectron; 2020 Sep; 164():112255. PubMed ID: 32479338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.