These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36779294)

  • 1. Unravelling metabolic cross-feeding in a yeast-bacteria community using
    Gabrielli N; Maga-Nteve C; Kafkia E; Rettel M; Loeffler J; Kamrad S; Typas A; Patil KR
    Mol Syst Biol; 2023 Apr; 19(4):e11501. PubMed ID: 36779294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow.
    Ponomarova O; Gabrielli N; Sévin DC; Mülleder M; Zirngibl K; Bulyha K; Andrejev S; Kafkia E; Typas A; Sauer U; Ralser M; Patil KR
    Cell Syst; 2017 Oct; 5(4):345-357.e6. PubMed ID: 28964698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon.
    Zenke FT; Zachariae W; Lunkes A; Breunig KD
    Mol Cell Biol; 1993 Dec; 13(12):7566-76. PubMed ID: 8246973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures.
    Mendes F; Sieuwerts S; de Hulster E; Almering MJ; Luttik MA; Pronk JT; Smid EJ; Bron PA; Daran-Lapujade P
    Appl Environ Microbiol; 2013 Oct; 79(19):5949-61. PubMed ID: 23872557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate.
    Sahoo TK; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5653-5662. PubMed ID: 31115633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived C-labelling data.
    Kleijn RJ; Geertman JM; Nfor BK; Ras C; Schipper D; Pronk JT; Heijnen JJ; van Maris AJ; van Winden WA
    FEMS Yeast Res; 2007 Mar; 7(2):216-31. PubMed ID: 17132142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae.
    Renvoisé M; Bonhomme L; Davanture M; Valot B; Zivy M; Lemaire C
    J Proteomics; 2014 Jun; 106():140-50. PubMed ID: 24769239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing Carbon Metabolism with Stable Isotope Metabolomics Reveals the Legacy of Diverse Carbon Sources in Soil.
    Wilhelm RC; Barnett SE; Swenson TL; Youngblut ND; Koechli CN; Bowen BP; Northen TR; Buckley DH
    Appl Environ Microbiol; 2022 Nov; 88(22):e0083922. PubMed ID: 36300927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function.
    Velagapudi VR; Wittmann C; Schneider K; Heinzle E
    J Biotechnol; 2007 Dec; 132(4):395-404. PubMed ID: 17919760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae.
    Garcia-Albornoz M; Holman SW; Antonisse T; Daran-Lapujade P; Teusink B; Beynon RJ; Hubbard SJ
    Mol Omics; 2020 Feb; 16(1):59-72. PubMed ID: 31868867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion.
    Konstantinidis D; Pereira F; Geissen EM; Grkovska K; Kafkia E; Jouhten P; Kim Y; Devendran S; Zimmermann M; Patil KR
    Mol Syst Biol; 2021 Aug; 17(8):e10189. PubMed ID: 34370382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources.
    Paulo JA; O'Connell JD; Everley RA; O'Brien J; Gygi MA; Gygi SP
    J Proteomics; 2016 Oct; 148():85-93. PubMed ID: 27432472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.
    Paulo JA; O'Connell JD; Gaun A; Gygi SP
    Mol Biol Cell; 2015 Nov; 26(22):4063-74. PubMed ID: 26399295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.
    Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS
    J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced lysis upon growth of Lactococcus lactis on galactose is a consequence of decreased binding of the autolysin AcmA.
    Steen A; Buist G; Kramer NE; Jalving R; Benus GF; Venema G; Kuipers OP; Kok J
    Appl Environ Microbiol; 2008 Aug; 74(15):4671-9. PubMed ID: 18539791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of Nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae.
    Liu C; Hu B; Liu Y; Chen S
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):751-61. PubMed ID: 18563651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae.
    Liu C; Hu B; Liu Y; Chen S
    Appl Biochem Biotechnol; 2006; 129-132():751-61. PubMed ID: 16915685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GlaR (YugA)-a novel RpiR-family transcription activator of the Leloir pathway of galactose utilization in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Szatraj K; Kosiorek K
    Microbiologyopen; 2019 May; 8(5):e00714. PubMed ID: 30099846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux distributions in recombinant Saccharomyces cerevisiae during foreign protein production.
    Jin S; Ye K; Shimizu K
    J Biotechnol; 1997 May; 54(3):161-74. PubMed ID: 9208486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dbf2 is implicated in a Cbt1-dependent pathway following a shift from glucose to galactose or non-fermentable carbon sources in Saccharomyces cerevisiae.
    Grandin N; Charbonneau M
    Mol Gen Genet; 1999 Mar; 261(2):402-7. PubMed ID: 10102376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.