These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36779333)

  • 1. Assumptions and analysis planning in studies with missing data in multiple variables: moving beyond the MCAR/MAR/MNAR classification.
    Lee KJ; Carlin JB; Simpson JA; Moreno-Betancur M
    Int J Epidemiol; 2023 Aug; 52(4):1268-1275. PubMed ID: 36779333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiologic Studies.
    Moreno-Betancur M; Lee KJ; Leacy FP; White IR; Simpson JA; Carlin JB
    Am J Epidemiol; 2018 Dec; 187(12):2705-2715. PubMed ID: 30124749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaps in the usage and reporting of multiple imputation for incomplete data: findings from a scoping review of observational studies addressing causal questions.
    Mainzer RM; Moreno-Betancur M; Nguyen CD; Simpson JA; Carlin JB; Lee KJ
    BMC Med Res Methodol; 2024 Sep; 24(1):193. PubMed ID: 39232661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Missing not at random in end of life care studies: multiple imputation and sensitivity analysis on data from the ACTION study.
    Carreras G; Miccinesi G; Wilcock A; Preston N; Nieboer D; Deliens L; Groenvold M; Lunder U; van der Heide A; Baccini M;
    BMC Med Res Methodol; 2021 Jan; 21(1):13. PubMed ID: 33422019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Score test for missing at random or not under logistic missingness models.
    Wang H; Lu Z; Liu Y
    Biometrics; 2023 Jun; 79(2):1268-1279. PubMed ID: 35348206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recoverability and estimation of causal effects under typical multivariable missingness mechanisms.
    Zhang J; Dashti SG; Carlin JB; Lee KJ; Moreno-Betancur M
    Biom J; 2024 Apr; 66(3):e2200326. PubMed ID: 38637322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heckman imputation models for binary or continuous MNAR outcomes and MAR predictors.
    Galimard JE; Chevret S; Curis E; Resche-Rigon M
    BMC Med Res Methodol; 2018 Aug; 18(1):90. PubMed ID: 30170561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Missing data and multiple imputation in clinical epidemiological research.
    Pedersen AB; Mikkelsen EM; Cronin-Fenton D; Kristensen NR; Pham TM; Pedersen L; Petersen I
    Clin Epidemiol; 2017; 9():157-166. PubMed ID: 28352203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using causal diagrams to guide analysis in missing data problems.
    Daniel RM; Kenward MG; Cousens SN; De Stavola BL
    Stat Methods Med Res; 2012 Jun; 21(3):243-56. PubMed ID: 21389091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid return to baseline imputation method to incorporate MAR and MNAR dropout missingness.
    Jin M
    Contemp Clin Trials; 2022 Sep; 120():106859. PubMed ID: 35872135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism-aware imputation: a two-step approach in handling missing values in metabolomics.
    Dekermanjian JP; Shaddox E; Nandy D; Ghosh D; Kechris K
    BMC Bioinformatics; 2022 May; 23(1):179. PubMed ID: 35578165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Handling missing data in clinical research.
    Heymans MW; Twisk JWR
    J Clin Epidemiol; 2022 Nov; 151():185-188. PubMed ID: 36150546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches for missing covariate data in logistic regression with MNAR sensitivity analyses.
    Ward RC; Axon RN; Gebregziabher M
    Biom J; 2020 Jul; 62(4):1025-1037. PubMed ID: 31957905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation.
    Rezvan PH; White IR; Lee KJ; Carlin JB; Simpson JA
    BMC Med Res Methodol; 2015 Oct; 15():83. PubMed ID: 26464305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study.
    Marshall A; Altman DG; Royston P; Holder RL
    BMC Med Res Methodol; 2010 Jan; 10():7. PubMed ID: 20085642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylation data imputation performances under different representations and missingness patterns.
    Lena PD; Sala C; Prodi A; Nardini C
    BMC Bioinformatics; 2020 Jun; 21(1):268. PubMed ID: 32600298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the types of missingness in quality of life data from clinical trials.
    Curran D; Bacchi M; Schmitz SF; Molenberghs G; Sylvester RJ
    Stat Med; 1998 Mar 15-Apr 15; 17(5-7):739-56. PubMed ID: 9549820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Principled Approach to Characterize and Analyze Partially Observed Confounder Data from Electronic Health Records.
    Weberpals J; Raman SR; Shaw PA; Lee H; Russo M; Hammill BG; Toh S; Connolly JG; Dandreo KJ; Tian F; Liu W; Li J; Hernández-Muñoz JJ; Glynn RJ; Desai RJ
    Clin Epidemiol; 2024; 16():329-343. PubMed ID: 38798915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to deal with missing longitudinal data in cost of illness analysis in Alzheimer's disease-suggestions from the GERAS observational study.
    Belger M; Haro JM; Reed C; Happich M; Kahle-Wrobleski K; Argimon JM; Bruno G; Dodel R; Jones RW; Vellas B; Wimo A
    BMC Med Res Methodol; 2016 Jul; 16():83. PubMed ID: 27430559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review.
    Mainzer R; Moreno-Betancur M; Nguyen C; Simpson J; Carlin J; Lee K
    BMJ Open; 2023 Feb; 13(2):e065576. PubMed ID: 36725096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.