These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 36779387)

  • 1. 3D printed microfluidics: advances in strategies, integration, and applications.
    Su R; Wang F; McAlpine MC
    Lab Chip; 2023 Mar; 23(5):1279-1299. PubMed ID: 36779387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printed Polymer Photodetectors.
    Park SH; Su R; Jeong J; Guo SZ; Qiu K; Joung D; Meng F; McAlpine MC
    Adv Mater; 2018 Aug; ():e1803980. PubMed ID: 30151842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printed Bionic Nanodevices.
    Kong YL; Gupta MK; Johnson BN; McAlpine MC
    Nano Today; 2016 Jun; 11(3):330-350. PubMed ID: 27617026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional-printing for microfluidics or the other way around?
    Zhang Y
    Int J Bioprint; 2019; 5(2):192. PubMed ID: 32596534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing 3D printed microfluidics with computational methods for sweat analysis.
    Ece E; Ölmez K; Hacıosmanoğlu N; Atabay M; Inci F
    Mikrochim Acta; 2024 Feb; 191(3):162. PubMed ID: 38411762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-cost, versatile, and highly reproducible microfabrication pipeline to generate 3D-printed customised cell culture devices with complex designs.
    Hagemann C; Bailey MCD; Carraro E; Stankevich KS; Lionello VM; Khokhar N; Suklai P; Moreno-Gonzalez C; O'Toole K; Konstantinou G; Dix CL; Joshi S; Giagnorio E; Bergholt MS; Spicer CD; Imbert A; Tedesco FS; Serio A
    PLoS Biol; 2024 Mar; 22(3):e3002503. PubMed ID: 38478490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements.
    Monia Kabandana GK; Jones CG; Sharifi SK; Chen C
    ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-Printed Immunosensor Arrays for Cancer Diagnostics.
    Sharafeldin M; Kadimisetty K; Bhalerao KS; Chen T; Rusling JF
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32806676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications.
    Deliorman M; Ali DS; Qasaimeh MA
    Biomed Eng Comput Biol; 2023; 14():11795972231214387. PubMed ID: 38033395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices.
    Subirada F; Paoli R; Sierra-Agudelo J; Lagunas A; Rodriguez-Trujillo R; Samitier J
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional 3D printing: Approaches and bioapplications.
    Palmara G; Frascella F; Roppolo I; Chiappone A; Chiadò A
    Biosens Bioelectron; 2021 Mar; 175():112849. PubMed ID: 33250333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.
    Morgan AJ; Hidalgo San Jose L; Jamieson WD; Wymant JM; Song B; Stephens P; Barrow DA; Castell OK
    PLoS One; 2016; 11(4):e0152023. PubMed ID: 27050661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications.
    Duarte LC; Figueredo F; Chagas CLS; Cortón E; Coltro WKT
    Anal Chim Acta; 2024 Apr; 1299():342429. PubMed ID: 38499426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct-Ink-Writing 3D-Printed Bioelectronics.
    Tay RY; Song Y; Yao DR; Gao W
    Mater Today (Kidlington); 2023 Dec; 71():135-151. PubMed ID: 38222250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Resolution of 3D-Printed Molds for Microfluidics by Iterative Casting-Shrinkage Cycles.
    Sun M; Xie Y; Zhu J; Li J; Eijkel JC
    Anal Chem; 2017 Feb; 89(4):2227-2231. PubMed ID: 28192927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.