These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 36779387)
1. 3D printed microfluidics: advances in strategies, integration, and applications. Su R; Wang F; McAlpine MC Lab Chip; 2023 Mar; 23(5):1279-1299. PubMed ID: 36779387 [TBL] [Abstract][Full Text] [Related]
2. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices. Li X; Wang M; Davis TP; Zhang L; Qiao R Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605 [TBL] [Abstract][Full Text] [Related]
3. 3D Printed Polymer Photodetectors. Park SH; Su R; Jeong J; Guo SZ; Qiu K; Joung D; Meng F; McAlpine MC Adv Mater; 2018 Aug; ():e1803980. PubMed ID: 30151842 [TBL] [Abstract][Full Text] [Related]
4. 3D Printed Bionic Nanodevices. Kong YL; Gupta MK; Johnson BN; McAlpine MC Nano Today; 2016 Jun; 11(3):330-350. PubMed ID: 27617026 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional-printing for microfluidics or the other way around? Zhang Y Int J Bioprint; 2019; 5(2):192. PubMed ID: 32596534 [TBL] [Abstract][Full Text] [Related]
6. Advancing 3D printed microfluidics with computational methods for sweat analysis. Ece E; Ölmez K; Hacıosmanoğlu N; Atabay M; Inci F Mikrochim Acta; 2024 Feb; 191(3):162. PubMed ID: 38411762 [TBL] [Abstract][Full Text] [Related]
7. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867 [TBL] [Abstract][Full Text] [Related]
9. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements. Monia Kabandana GK; Jones CG; Sharifi SK; Chen C ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857 [TBL] [Abstract][Full Text] [Related]
10. Emerging 3D printing technologies and methodologies for microfluidic development. Monia Kabandana GK; Zhang T; Chen C Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586 [TBL] [Abstract][Full Text] [Related]
11. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review. Gyimah N; Scheler O; Rang T; Pardy T Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056 [TBL] [Abstract][Full Text] [Related]
12. 3D-Printed Immunosensor Arrays for Cancer Diagnostics. Sharafeldin M; Kadimisetty K; Bhalerao KS; Chen T; Rusling JF Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32806676 [TBL] [Abstract][Full Text] [Related]
13. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. Deliorman M; Ali DS; Qasaimeh MA Biomed Eng Comput Biol; 2023; 14():11795972231214387. PubMed ID: 38033395 [TBL] [Abstract][Full Text] [Related]
14. Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices. Subirada F; Paoli R; Sierra-Agudelo J; Lagunas A; Rodriguez-Trujillo R; Samitier J Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890735 [TBL] [Abstract][Full Text] [Related]
15. Functional 3D printing: Approaches and bioapplications. Palmara G; Frascella F; Roppolo I; Chiappone A; Chiadò A Biosens Bioelectron; 2021 Mar; 175():112849. PubMed ID: 33250333 [TBL] [Abstract][Full Text] [Related]
16. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication. Morgan AJ; Hidalgo San Jose L; Jamieson WD; Wymant JM; Song B; Stephens P; Barrow DA; Castell OK PLoS One; 2016; 11(4):e0152023. PubMed ID: 27050661 [TBL] [Abstract][Full Text] [Related]