These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36779417)

  • 1. PPARα activation partially drives NAFLD development in liver-specific Hnf4a-null mice.
    Kasano-Camones CI; Takizawa M; Ohshima N; Saito C; Iwasaki W; Nakagawa Y; Fujitani Y; Yoshida R; Saito Y; Izumi T; Terawaki SI; Sakaguchi M; Gonzalez FJ; Inoue Y
    J Biochem; 2023 Apr; 173(5):393-411. PubMed ID: 36779417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PIK3R3 regulates PPARα expression to stimulate fatty acid β-oxidation and decrease hepatosteatosis.
    Yang X; Fu Y; Hu F; Luo X; Hu J; Wang G
    Exp Mol Med; 2018 Jan; 50(1):e431. PubMed ID: 29350678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease.
    Pawlak M; Lefebvre P; Staels B
    J Hepatol; 2015 Mar; 62(3):720-33. PubMed ID: 25450203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upregulation of miR-181a impairs lipid metabolism by targeting PPARα expression in nonalcoholic fatty liver disease.
    Huang R; Duan X; Liu X; Cao H; Wang Y; Fan J; Wang B
    Biochem Biophys Res Commun; 2019 Jan; 508(4):1252-1258. PubMed ID: 30558790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PPARα/HNF4α interplay on diversified responsive elements. Relevance in the regulation of liver peroxisomal fatty acid catabolism.
    Chamouton J; Latruffe N
    Curr Drug Metab; 2012 Dec; 13(10):1436-53. PubMed ID: 22978398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrahepatic PPARα modulates fatty acid oxidation and attenuates fasting-induced hepatosteatosis in mice.
    Brocker CN; Patel DP; Velenosi TJ; Kim D; Yan T; Yue J; Li G; Krausz KW; Gonzalez FJ
    J Lipid Res; 2018 Nov; 59(11):2140-2152. PubMed ID: 30158201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPARα Downregulates Hepatic Glutaminase Expression in Mice Fed Diets with Different Protein:Carbohydrate Ratios.
    Velázquez-Villegas LA; Charabati T; Contreras AV; Alemán G; Torres N; Tovar AR
    J Nutr; 2016 Sep; 146(9):1634-40. PubMed ID: 27466601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD.
    Montagner A; Polizzi A; Fouché E; Ducheix S; Lippi Y; Lasserre F; Barquissau V; Régnier M; Lukowicz C; Benhamed F; Iroz A; Bertrand-Michel J; Al Saati T; Cano P; Mselli-Lakhal L; Mithieux G; Rajas F; Lagarrigue S; Pineau T; Loiseau N; Postic C; Langin D; Wahli W; Guillou H
    Gut; 2016 Jul; 65(7):1202-14. PubMed ID: 26838599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα.
    Liang N; Damdimopoulos A; Goñi S; Huang Z; Vedin LL; Jakobsson T; Giudici M; Ahmed O; Pedrelli M; Barilla S; Alzaid F; Mendoza A; Schröder T; Kuiper R; Parini P; Hollenberg A; Lefebvre P; Francque S; Van Gaal L; Staels B; Venteclef N; Treuter E; Fan R
    Nat Commun; 2019 Apr; 10(1):1684. PubMed ID: 30975991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PARP1-mediated PPARα poly(ADP-ribosyl)ation suppresses fatty acid oxidation in non-alcoholic fatty liver disease.
    Huang K; Du M; Tan X; Yang L; Li X; Jiang Y; Wang C; Zhang F; Zhu F; Cheng M; Yang Q; Yu L; Wang L; Huang D; Huang K
    J Hepatol; 2017 May; 66(5):962-977. PubMed ID: 27979751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochemical gallic acid alleviates nonalcoholic fatty liver disease via AMPK-ACC-PPARa axis through dual regulation of lipid metabolism and mitochondrial function.
    Zhang J; Zhang W; Yang L; Zhao W; Liu Z; Wang E; Wang J
    Phytomedicine; 2023 Jan; 109():154589. PubMed ID: 36610145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic
    Lee YH; Jang HJ; Kim S; Choi SS; Khim KW; Eom HJ; Hyun J; Shin KJ; Chae YC; Kim H; Park J; Park NH; Woo CY; Hong CH; Koh EH; Nam D; Choi JH
    Elife; 2021 Dec; 10():. PubMed ID: 34964438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity.
    Régnier M; Polizzi A; Smati S; Lukowicz C; Fougerat A; Lippi Y; Fouché E; Lasserre F; Naylies C; Bétoulières C; Barquissau V; Mouisel E; Bertrand-Michel J; Batut A; Saati TA; Canlet C; Tremblay-Franco M; Ellero-Simatos S; Langin D; Postic C; Wahli W; Loiseau N; Guillou H; Montagner A
    Sci Rep; 2020 Apr; 10(1):6489. PubMed ID: 32300166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease.
    Guzmán C; Benet M; Pisonero-Vaquero S; Moya M; García-Mediavilla MV; Martínez-Chantar ML; González-Gallego J; Castell JV; Sánchez-Campos S; Jover R
    Biochim Biophys Acta; 2013 Apr; 1831(4):803-18. PubMed ID: 23318274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of mouse hepatic alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase, a key enzyme in the tryptophan-nicotinamide adenine dinucleotide pathway, by hepatocyte nuclear factor 4alpha and peroxisome proliferator-activated receptor alpha.
    Shin M; Kim I; Inoue Y; Kimura S; Gonzalez FJ
    Mol Pharmacol; 2006 Oct; 70(4):1281-90. PubMed ID: 16807375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PPARα/RXRα downregulates amino acid catabolism in the liver via interaction with HNF4α promoting its proteasomal degradation.
    Tobón-Cornejo S; Vargas-Castillo A; Leyva-Martínez A; Ortíz V; Noriega LG; Velázquez-Villegas LA; Aleman G; Furosawa-Carballeda J; Torres N; Tovar AR
    Metabolism; 2021 Mar; 116():154705. PubMed ID: 33422545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatocyte nuclear factor 4α in the pathogenesis of non-alcoholic fatty liver disease.
    Pan X; Zhang Y
    Chin Med J (Engl); 2022 May; 135(10):1172-1181. PubMed ID: 35191422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatic Krüppel-like factor 16 (KLF16) targets PPARα to improve steatohepatitis and insulin resistance.
    Sun N; Shen C; Zhang L; Wu X; Yu Y; Yang X; Yang C; Zhong C; Gao Z; Miao W; Yang Z; Gao W; Hu L; Williams K; Liu C; Chang Y; Gao Y
    Gut; 2021 Nov; 70(11):2183-2195. PubMed ID: 33257471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway.
    Chen J; Chen J; Fu H; Li Y; Wang L; Luo S; Lu H
    Am J Physiol Endocrinol Metab; 2019 Oct; 317(4):E710-E722. PubMed ID: 31430204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of perfluorooctanoate on high fat diet induced non-alcoholic fatty liver disease in mice.
    Li X; Wang Z; Klaunig JE
    Toxicology; 2019 Mar; 416():1-14. PubMed ID: 30711707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.