These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36779629)

  • 41. New Scalable Approach toward Shape Memory Polymer Composites via "Spring-Buckle" Microstructure Design.
    Wu X; Han Y; Zhou Z; Zhang X; Lu C
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13657-13665. PubMed ID: 28358194
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Shape-morphing composites with designed micro-architectures.
    Rodriguez JN; Zhu C; Duoss EB; Wilson TS; Spadaccini CM; Lewicki JP
    Sci Rep; 2016 Jun; 6():27933. PubMed ID: 27301435
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Review of Progress in Shape Memory Epoxies and Their Composites.
    Karger-Kocsis J; Kéki S
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D printed biodegradable functional temperature-stimuli shape memory polymer for customized scaffoldings.
    Pandey A; Singh G; Singh S; Jha K; Prakash C
    J Mech Behav Biomed Mater; 2020 Aug; 108():103781. PubMed ID: 32469714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering Surface Patterns with Shape Memory Polymers: Multiple Design Dimensions for Diverse and Hierarchical Structures.
    Zhao L; Zhang L; Zhao J; Shi J; Dai Z; Wang G; Zhang C; Li B; Feng X; Zhang H; Zhang J; Zhang Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1563-1570. PubMed ID: 30499288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Memory-effects of magnetic nanocomposites.
    Razzaq MY; Behl M; Lendlein A
    Nanoscale; 2012 Oct; 4(20):6181-95. PubMed ID: 22941347
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths.
    Zhang D; Giese ML; Prukop SL; Grunlan MA
    J Polym Sci A Polym Chem; 2011 Feb; 49(3):754-761. PubMed ID: 22904597
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanically Responsive Circularly Polarized Luminescence from Cellulose-Nanocrystal-Based Shape-Memory Polymers.
    Xu M; Xu Z; Soto MA; Xu YT; Hamad WY; MacLachlan MJ
    Adv Mater; 2023 Jul; 35(29):e2301060. PubMed ID: 37019850
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Printing Parameters of Fused Filament Fabrication Affect Key Properties of Four-Dimensional Printed Shape-Memory Polymers.
    Pieri K; Felix BM; Zhang T; Soman P; Henderson JH
    3D Print Addit Manuf; 2023 Apr; 10(2):279-288. PubMed ID: 37123528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Shape memory polymers with visible and near-infrared imaging modalities: Synthesis, characterization and
    Weems AC; Raymond JE; Easley AD; Wierzbicki MA; Gustafson T; Monroe M; Maitland DJ
    RSC Adv; 2017; 7(32):19742-19753. PubMed ID: 30288254
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties.
    Zhang D; Petersen KM; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):186-91. PubMed ID: 23227875
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-Restoring Capacitive Pressure Sensor Based on Three-Dimensional Porous Structure and Shape Memory Polymer.
    Park B; Jung Y; Ko JS; Park J; Cho H
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33800342
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.
    Fang Y; Ni Y; Leo SY; Wang B; Basile V; Taylor C; Jiang P
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23650-9. PubMed ID: 26447681
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites.
    Filion TM; Xu J; Prasad ML; Song J
    Biomaterials; 2011 Feb; 32(4):985-91. PubMed ID: 21040968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers.
    Pisani S; Genta I; Modena T; Dorati R; Benazzo M; Conti B
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical Analysis of Space Deployable Structure Based on Shape Memory Polymers.
    He Z; Shi Y; Feng X; Li Z; Zhang Y; Dai C; Wang P; Zhao L
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357243
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation and characterization of shape memory polymer scaffolds via solvent casting/particulate leaching.
    De Nardo L; Bertoldi S; Cigada A; Tanzi MC; Haugen HJ; Farè S
    J Appl Biomater Funct Mater; 2012 Sep; 10(2):119-26. PubMed ID: 23015372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inverse design and demonstration of high-performance wide-angle diffractive optical elements.
    Kim DC; Hermerschmidt A; Dyachenko P; Scharf T
    Opt Express; 2020 Jul; 28(15):22321-22333. PubMed ID: 32752497
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparison of polymer substrates for photolithographic processing of flexible bioelectronics.
    Simon D; Ware T; Marcotte R; Lund BR; Smith DW; Di Prima M; Rennaker RL; Voit W
    Biomed Microdevices; 2013 Dec; 15(6):925-39. PubMed ID: 23852172
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New design strategy for reversible plasticity shape memory polymers with deformable glassy aggregates.
    Lin T; Tang Z; Guo B
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21060-8. PubMed ID: 25389952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.