BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 36779718)

  • 21. Staphylococcus epidermidis Phages Transduce Antimicrobial Resistance Plasmids and Mobilize Chromosomal Islands.
    Fišarová L; Botka T; Du X; Mašlaňová I; Bárdy P; Pantůček R; Benešík M; Roudnický P; Winstel V; Larsen J; Rosenstein R; Peschel A; Doškař J
    mSphere; 2021 May; 6(3):. PubMed ID: 33980677
    [No Abstract]   [Full Text] [Related]  

  • 22. Two different Panton-Valentine leukocidin phage lineages predominate in Japan.
    Ma XX; Ito T; Kondo Y; Cho M; Yoshizawa Y; Kaneko J; Katai A; Higashiide M; Li S; Hiramatsu K
    J Clin Microbiol; 2008 Oct; 46(10):3246-58. PubMed ID: 18685010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of hlb-Converting Bacteriophages in Staphylococcus aureus Host Adaption.
    Rohmer C; Wolz C
    Microb Physiol; 2021; 31(2):109-122. PubMed ID: 34126612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resident TP712 Prophage of Lactococcus lactis Strain MG1363 Provides Extra Holin Functions to the P335 Phage CAP for Effective Host Lysis.
    Escobedo S; Wegmann U; Pérez de Pipaon M; Campelo AB; Stentz R; Rodríguez A; Martínez B
    Appl Environ Microbiol; 2021 Sep; 87(19):e0109221. PubMed ID: 34260308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diversity of prophages in dominant Staphylococcus aureus clonal lineages.
    Goerke C; Pantucek R; Holtfreter S; Schulte B; Zink M; Grumann D; Bröker BM; Doskar J; Wolz C
    J Bacteriol; 2009 Jun; 191(11):3462-8. PubMed ID: 19329640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genes Influencing Phage Host Range in Staphylococcus aureus on a Species-Wide Scale.
    Moller AG; Winston K; Ji S; Wang J; Hargita Davis MN; Solís-Lemus CR; Read TD
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33441407
    [No Abstract]   [Full Text] [Related]  

  • 27. Bacteriophages benefit from generalized transduction.
    Fillol-Salom A; Alsaadi A; Sousa JAM; Zhong L; Foster KR; Rocha EPC; Penadés JR; Ingmer H; Haaber J
    PLoS Pathog; 2019 Jul; 15(7):e1007888. PubMed ID: 31276485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lysogeny in staphylococci.
    BLAIR JE; CARR M
    J Bacteriol; 1961 Dec; 82(6):984-93. PubMed ID: 13869737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ϕSa3mw Prophage as a Molecular Regulatory Switch of Staphylococcus aureus β-Toxin Production.
    Tran PM; Feiss M; Kinney KJ; Salgado-Pabón W
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30962356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacteriophage P22 SieA-mediated superinfection exclusion.
    Leavitt JC; Woodbury BM; Gilcrease EB; Bridges CM; Teschke CM; Casjens SR
    mBio; 2024 Feb; 15(2):e0216923. PubMed ID: 38236051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Staphylococcal Phages Adapt to New Hosts by Extensive Attachment Site Variability.
    Leinweber H; Sieber RN; Larsen J; Stegger M; Ingmer H
    mBio; 2021 Dec; 12(6):e0225921. PubMed ID: 34872344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion.
    Coleman DC; Sullivan DJ; Russell RJ; Arbuthnott JP; Carey BF; Pomeroy HM
    J Gen Microbiol; 1989 Jun; 135(6):1679-97. PubMed ID: 2533245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Yet More Evidence of Collusion: a New Viral Defense System Encoded by
    Montgomery MT; Guerrero Bustamante CA; Dedrick RM; Jacobs-Sera D; Hatfull GF
    mBio; 2019 Mar; 10(2):. PubMed ID: 30890601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for a holin-like protein gene fully embedded out of frame in the endolysin gene of Staphylococcus aureus bacteriophage 187.
    Loessner MJ; Gaeng S; Scherer S
    J Bacteriol; 1999 Aug; 181(15):4452-60. PubMed ID: 10419939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryptic-Prophage-Encoded Small Protein DicB Protects
    Ragunathan PT; Vanderpool CK
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31527115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the third type of PVL phage in ST59 methicillin-resistant Staphylococcus aureus (MRSA) strains.
    Zhang M; Ito T; Li S; Jin J; Takeuchi F; Lauderdale TL; Higashide M; Hiramatsu K
    FEMS Microbiol Lett; 2011 Oct; 323(1):20-8. PubMed ID: 21732964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection.
    Paul VD; Sundarrajan S; Rajagopalan SS; Hariharan S; Kempashanaiah N; Padmanabhan S; Sriram B; Ramachandran J
    BMC Microbiol; 2011 Aug; 11():195. PubMed ID: 21880144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Panton-Valentine leukocidin gene sequence variation and phage in methicillin-resistant and methicillin-susceptible Staphylococcus aureus from children in mainland China.
    Li X; Sun J; Wu D; Wang L; Yang Y; Wang C; Liu L; Zhao C; Du P; Yu S; Shen X
    Microbiol Immunol; 2012 Mar; 56(3):155-62. PubMed ID: 22469181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Examination of
    Ene A; Miller-Ensminger T; Mores CR; Giannattasio-Ferraz S; Wolfe AJ; Abouelfetouh A; Putonti C
    Viruses; 2021 Feb; 13(2):. PubMed ID: 33671574
    [No Abstract]   [Full Text] [Related]  

  • 40. Phage Transduction of Staphylococcus aureus.
    Chu Yuan Kee MJ; Chen J
    Methods Mol Biol; 2024; 2738():263-275. PubMed ID: 37966605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.