These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36780153)

  • 41. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.
    Horst F; Czarnecki D; Zink K
    Med Phys; 2015 Nov; 42(11):6529-36. PubMed ID: 26520743
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gas bremsstrahlung and associated photon-neutron shielding calculations for electron storage rings.
    Liu JC; Nelson WR; Kase KR
    Health Phys; 1995 Feb; 68(2):205-13. PubMed ID: 7814254
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of the photon spectrum of a therapeutic linear accelerator near the maze entrance: Comparison of Monte Carlo modeling and measurements using scintillation detectors corrected for pulse pile-up.
    Qutub MAZ; Hugtenburg RP; Al-Affan IAM
    Med Phys; 2020 Sep; 47(9):4522-4530. PubMed ID: 32469079
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnetic confinement of electron and photon radiotherapy dose: a Monte Carlo simulation with a nonuniform longitudinal magnetic field.
    Chen Y; Bielajew AF; Litzenberg DW; Moran JM; Becchetti FD
    Med Phys; 2005 Dec; 32(12):3810-8. PubMed ID: 16475781
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessment of skin doses in small field radiotherapy for 6 MV photons and beam spectral analysis at skin surface: an EGSnrc based Monte Carlo study.
    Gul A; Kakakhel MB; Mirza SM
    Radiat Environ Biophys; 2021 May; 60(2):299-308. PubMed ID: 33660011
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantifying effects of lead shielding in electron beams: a Monte Carlo study.
    Verhaegen F; Buffa FM; Deehan C
    Phys Med Biol; 2001 Mar; 46(3):757-69. PubMed ID: 11277223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A direction-selective flattening filter for clinical photon beams. Monte Carlo evaluation of a new concept.
    Chofor N; Harder D; Willborn K; Rühmann A; Poppe B
    Phys Med Biol; 2011 Jul; 56(14):4355-76. PubMed ID: 21709343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam.
    Ding GX
    Med Phys; 2002 Nov; 29(11):2459-63. PubMed ID: 12462709
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shielding effects of metallic encapsulations and radiographic contrast agents for catheter-based intravascular brachytherapy.
    Nath R; Yue N
    Cardiovasc Radiat Med; 2001; 2(2):93-103. PubMed ID: 11340013
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote afterloader.
    Melhus CS; Rivard MJ; Kurkomelis J; Liddle CB; Massé FX
    Radiat Prot Dosimetry; 2005; 113(4):428-37. PubMed ID: 15755770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit.
    Vuolo M; Baiocco G; Barbieri S; Bocchini L; Giraudo M; Gheysens T; Lobascio C; Ottolenghi A
    Life Sci Space Res (Amst); 2017 Nov; 15():69-78. PubMed ID: 29198316
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Treatment vault shielding for a flattening filter-free medical linear accelerator.
    Kry SF; Howell RM; Polf J; Mohan R; Vassiliev ON
    Phys Med Biol; 2009 Mar; 54(5):1265-73. PubMed ID: 19190359
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.
    Figueroa RG; Valente M
    Phys Med Biol; 2015 Sep; 60(18):7191-206. PubMed ID: 26348025
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monte Carlo simulation of photon buildup factors for shielding materials in radiotherapy x-ray facilities.
    Karoui MK; Kharrati H
    Med Phys; 2013 Jul; 40(7):073901. PubMed ID: 23822458
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of customised neutron shielding in the maze of radiotherapy accelerators.
    Waller EJ; Jamieson TJ; Cole D; Cousins T; Jammal RB
    Radiat Prot Dosimetry; 2003; 107(4):233-8. PubMed ID: 14756179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neutron-induced electronic failures around a high-energy linear accelerator.
    Kry SF; Johnson JL; White RA; Howell RM; Kudchadker RJ; Gillin MT
    Med Phys; 2011 Jan; 38(1):34-9. PubMed ID: 21361172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Does concrete composition affect photoneutron production inside radiation therapy bunkers?
    Mesbahi A; Azarpeyvand AA; Khosravi HR
    Jpn J Radiol; 2012 Feb; 30(2):162-6. PubMed ID: 22180187
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Part II: Verification of the TrueBeam head shielding model in Varian VirtuaLinac via out-of-field doses.
    Wijesooriya K; Liyanage NK; Kaluarachchi M; Sawkey D
    Med Phys; 2019 Feb; 46(2):877-884. PubMed ID: 30368838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biological polymeric shielding design for an X-ray laboratory using Monte Carlo codes.
    Tajudin SM; Tabbakh F
    Radiol Phys Technol; 2019 Sep; 12(3):299-304. PubMed ID: 31302871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study.
    Park JM; Kim JI; Heon Choi C; Chie EK; Kim IH; Ye SJ
    Med Phys; 2012 Mar; 39(3):1265-77. PubMed ID: 22380358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.