BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36780464)

  • 1. Carotenoids Occurring in Maize Affect the Redox Homeostasis of
    Savignac JM; Atanasova V; Chereau S; Ducos C; Gallegos N; Ortega V; Ponts N; Richard-Forget F
    J Agric Food Chem; 2023 Feb; ():. PubMed ID: 36780464
    [No Abstract]   [Full Text] [Related]  

  • 2. Mycotoxin Biosynthesis and Central Metabolism Are Two Interlinked Pathways in Fusarium graminearum, as Demonstrated by the Extensive Metabolic Changes Induced by Caffeic Acid Exposure.
    Atanasova-Penichon V; Legoahec L; Bernillon S; Deborde C; Maucourt M; Verdal-Bonnin MN; Pinson-Gadais L; Ponts N; Moing A; Richard-Forget F
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427428
    [No Abstract]   [Full Text] [Related]  

  • 3. Aggressiveness and Mycotoxin Production by
    Machado FJ; de Barros AV; McMaster N; Schmale DG; Vaillancourt LJ; Del Ponte EM
    Phytopathology; 2022 Feb; 112(2):271-277. PubMed ID: 34142851
    [No Abstract]   [Full Text] [Related]  

  • 4. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation.
    Atanasova-Penichon V; Pons S; Pinson-Gadais L; Picot A; Marchegay G; Bonnin-Verdal MN; Ducos C; Barreau C; Roucolle J; Sehabiague P; Carolo P; Richard-Forget F
    Mol Plant Microbe Interact; 2012 Dec; 25(12):1605-16. PubMed ID: 23035912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests.
    Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC
    Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible Role of Trichothecene Mycotoxins in Virulence of Fusarium graminearum on Maize.
    Harris LJ; Desjardins AE; Plattner RD; Nicholson P; Butler G; Young JC; Weston G; Proctor RH; Hohn TM
    Plant Dis; 1999 Oct; 83(10):954-960. PubMed ID: 30841080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of Wood/Forest and Vine By-Products as Sources of New Drugs for Sustainable Strategies to Control
    Montibus M; Vitrac X; Coma V; Loron A; Pinson-Gadais L; Ferrer N; Verdal-Bonnin MN; Gabaston J; Waffo-Téguo P; Richard-Forget F; Atanasova V
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33466739
    [No Abstract]   [Full Text] [Related]  

  • 8. Trichothecene Genotype of Fusarium graminearum Isolates from Soybean (Glycine max) Seedling and Root Diseases in the United States.
    Ellis ML; Munkvold GP
    Plant Dis; 2014 Jul; 98(7):1012. PubMed ID: 30708932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.
    Gauthier L; Bonnin-Verdal MN; Marchegay G; Pinson-Gadais L; Ducos C; Richard-Forget F; Atanasova-Penichon V
    Int J Food Microbiol; 2016 Mar; 221():61-68. PubMed ID: 26812586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage.
    Desjardins AE; Proctor RH
    Fungal Biol; 2011 Jan; 115(1):38-48. PubMed ID: 21215953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal Endophytes Control
    F Abdallah M; De Boevre M; Landschoot S; De Saeger S; Haesaert G; Audenaert K
    Toxins (Basel); 2018 Nov; 10(12):. PubMed ID: 30477214
    [No Abstract]   [Full Text] [Related]  

  • 12. Genome-Wide Association Study Discovers Novel Germplasm Resources and Genetic Loci with Resistance to Gibberella Ear Rot Caused by
    Yuan G; He D; Shi J; Li Y; Yang Y; Du J; Zou C; Ma L; Gao S; Pan G; Shen Y
    Phytopathology; 2023 Jul; 113(7):1317-1324. PubMed ID: 36721376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Proteomic Analysis of the Defense Response to
    Bai H; Si H; Zang J; Pang X; Yu L; Cao H; Xing J; Zhang K; Dong J
    Front Plant Sci; 2021; 12():694973. PubMed ID: 34489999
    [No Abstract]   [Full Text] [Related]  

  • 14. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes.
    Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ
    BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping and Validation of a Stable Quantitative Trait Locus Conferring Maize Resistance to Gibberella Ear Rot.
    Zhou G; Li S; Ma L; Wang F; Jiang F; Sun Y; Ruan X; Cao Y; Wang Q; Zhang Y; Fan X; Gao X
    Plant Dis; 2021 Jul; 105(7):1984-1991. PubMed ID: 33616427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gibberella ear rot of maize (Zea mays) in Nepal: distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize.
    Desjardins AE; Busman M; Manandhar G; Jarosz AM; Manandhar HK; Proctor RH
    J Agric Food Chem; 2008 Jul; 56(13):5428-36. PubMed ID: 18533662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kernel Bioassay Evaluation of Maize Ear Rot and Genome-Wide Association Analysis for Identifying Genetic Loci Associated with Resistance to
    Zhang J; Shi H; Yang Y; Zeng C; Jia Z; Ma T; Wu M; Du J; Huang N; Pan G; Li Z; Yuan G
    J Fungi (Basel); 2023 Dec; 9(12):. PubMed ID: 38132758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects.
    Gaikpa DS; Miedaner T
    Theor Appl Genet; 2019 Oct; 132(10):2721-2739. PubMed ID: 31440772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tick defensin γ-core reduces Fusarium graminearum growth and abrogates mycotoxins production with high efficiency.
    Leannec-Rialland V; Cabezas-Cruz A; Atanasova V; Chereau S; Ponts N; Tonk M; Vilcinskas A; Ferrer N; Valdés JJ; Richard-Forget F
    Sci Rep; 2021 Apr; 11(1):7962. PubMed ID: 33846413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Strategy for Minimizing Mycotoxins in Cereal Crops: Assessment of the Biological Activity of Compounds Resulting from Virtual Screening.
    Atanasova V; Bresso E; Maigret B; Martins NF; Richard-Forget F
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.