BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36780528)

  • 1. Molecular mechanism of GTP binding- and dimerization-induced enhancement of Sar1-mediated membrane remodeling.
    Paul S; Audhya A; Cui Q
    Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2212513120. PubMed ID: 36780528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sar1 GTPase Activity Is Regulated by Membrane Curvature.
    Hanna MG; Mela I; Wang L; Henderson RM; Chapman ER; Edwardson JM; Audhya A
    J Biol Chem; 2016 Jan; 291(3):1014-27. PubMed ID: 26546679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for the initiation of COPII vesicle biogenesis.
    Joiner AMN; Fromme JC
    Structure; 2021 Aug; 29(8):859-872.e6. PubMed ID: 33831355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sar1 localizes at the rims of COPII-coated membranes in vivo.
    Kurokawa K; Suda Y; Nakano A
    J Cell Sci; 2016 Sep; 129(17):3231-7. PubMed ID: 27432890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export.
    Huang M; Weissman JT; Beraud-Dufour S; Luan P; Wang C; Chen W; Aridor M; Wilson IA; Balch WE
    J Cell Biol; 2001 Dec; 155(6):937-48. PubMed ID: 11739406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The small GTPase Sar1, control centre of COPII trafficking.
    Van der Verren SE; Zanetti G
    FEBS Lett; 2023 Mar; 597(6):865-882. PubMed ID: 36737236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly.
    Melville DB; Studer S; Schekman R
    J Biol Chem; 2020 Jun; 295(25):8401-8412. PubMed ID: 32358066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission.
    Bielli A; Haney CJ; Gabreski G; Watkins SC; Bannykh SI; Aridor M
    J Cell Biol; 2005 Dec; 171(6):919-24. PubMed ID: 16344311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mammalian guanine nucleotide exchange factor mSec12 is essential for activation of the Sar1 GTPase directing endoplasmic reticulum export.
    Weissman JT; Plutner H; Balch WE
    Traffic; 2001 Jul; 2(7):465-75. PubMed ID: 11422940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat.
    Bi X; Corpina RA; Goldberg J
    Nature; 2002 Sep; 419(6904):271-7. PubMed ID: 12239560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sed4p stimulates Sar1p GTP hydrolysis and promotes limited coat disassembly.
    Kodera C; Yorimitsu T; Nakano A; Sato K
    Traffic; 2011 May; 12(5):591-9. PubMed ID: 21291503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER.
    Barlowe C; Schekman R
    Nature; 1993 Sep; 365(6444):347-9. PubMed ID: 8377826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of Sec12 implicates potassium ion coordination in Sar1 activation.
    McMahon C; Studer SM; Clendinen C; Dann GP; Jeffrey PD; Hughson FM
    J Biol Chem; 2012 Dec; 287(52):43599-606. PubMed ID: 23109340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway.
    Hariri H; Bhattacharya N; Johnson K; Noble AJ; Stagg SM
    J Mol Biol; 2014 Nov; 426(22):3811-3826. PubMed ID: 25193674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sed4p functions as a positive regulator of Sar1p probably through inhibition of the GTPase activation by Sec23p.
    Saito-Nakano Y; Nakano A
    Genes Cells; 2000 Dec; 5(12):1039-48. PubMed ID: 11168590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pull down assay for GTP-bound form of Sar1a reveals its activation during morphological differentiation.
    Urai Y; Yamawaki M; Watanabe N; Seki Y; Morimoto T; Tago K; Homma K; Sakagami H; Miyamoto Y; Yamauchi J
    Biochem Biophys Res Commun; 2018 Sep; 503(3):2047-2053. PubMed ID: 30078678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence of a Sar1 gene family in Brassica campestris that suppresses a yeast vesicular transport mutation Sec12-1.
    Kim WY; Cheong NE; Je DY; Kim MG; Lim CO; Bahk JD; Cho MJ; Lee SY
    Plant Mol Biol; 1997 Apr; 33(6):1025-35. PubMed ID: 9154984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants.
    Memon AR
    Biochim Biophys Acta; 2004 Jul; 1664(1):9-30. PubMed ID: 15238254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COPII coat assembly and selective export from the endoplasmic reticulum.
    Sato K
    J Biochem; 2004 Dec; 136(6):755-60. PubMed ID: 15671485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activities of mutant Sar1 proteins in guanine nucleotide binding, GTP hydrolysis, and cell-free transport from the endoplasmic reticulum to the Golgi apparatus.
    Saito Y; Kimura K; Oka T; Nakano A
    J Biochem; 1998 Oct; 124(4):816-23. PubMed ID: 9756629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.