These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36780544)

  • 1. Universal Method for Label-Free Detection of Pathogens and Biomolecules by Surface-Enhanced Raman Spectroscopy Based on Gold Nanoparticles.
    Liu L; Zhang T; Wu Z; Zhang F; Wang Y; Wang X; Zhang Z; Li C; Lv X; Chen D; Jiao S; Wu J; Li Y
    Anal Chem; 2023 Feb; 95(8):4050-4058. PubMed ID: 36780544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile technique for indiscriminate detection of unlabeled biomolecules via double-enhanced Raman scattering.
    Wang X; Wang Y; He Y; Liu L; Wang X; Jiang S; Yang N; Shi N; Li Y
    Int J Biol Macromol; 2023 Feb; 228():615-623. PubMed ID: 36581033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanosponges (AuNS): a versatile nanostructure for surface-enhanced Raman spectroscopic detection of small molecules and biomolecules.
    Wallace GQ; Zuin MS; Tabatabaei M; Gobbo P; Lagugné-Labarthet F; Workentin MS
    Analyst; 2015 Nov; 140(21):7278-82. PubMed ID: 26347904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction.
    Li L; Hutter T; Steiner U; Mahajan S
    Analyst; 2013 Aug; 138(16):4574-8. PubMed ID: 23748709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of uncoated near-spherical gold nanoparticles for the label-free quantification of Lactobacillus rhamnosus GG by surface-enhanced Raman spectroscopy.
    Akanny E; Bonhommé A; Commun C; Doleans-Jordheim A; Bessueille F; Bourgeois S; Bordes C
    Anal Bioanal Chem; 2019 Aug; 411(21):5563-5576. PubMed ID: 31209547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities.
    Zheng XS; Jahn IJ; Weber K; Cialla-May D; Popp J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():56-77. PubMed ID: 29395932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra sensitive label free surface enhanced Raman spectroscopy method for the detection of biomolecules.
    Hughes J; Izake EL; Lott WB; Ayoko GA; Sillence M
    Talanta; 2014 Dec; 130():20-5. PubMed ID: 25159374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA induced CTAB-caped gold bipyramidal nanoparticles self-assembly using for Raman detection of DNA molecules.
    Zhang Y; Lyu X; Chen D; Wu J; Li D; Li Y
    Talanta; 2024 Jan; 266(Pt 1):124936. PubMed ID: 37478765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection.
    Ma X; Xia Y; Ni L; Song L; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():657-61. PubMed ID: 24368285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing of ordered two-dimensional gold nanoparticles film for cocaine detection in human urine using surface-enhanced Raman spectroscopy.
    Meng J; Tang X; Zhou B; Xie Q; Yang L
    Talanta; 2017 Mar; 164():693-699. PubMed ID: 28107992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold Nanosphere-Deposited Substrate for Distinguishing of Breast Cancer Subtypes Using Surface-Enhanced Raman Spectroscopy.
    Hossain MK; Cho HY; Choi JW
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6299-303. PubMed ID: 27427706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy.
    Hu J; Zheng PC; Jiang JH; Shen GL; Yu RQ; Liu GK
    Analyst; 2010 May; 135(5):1084-9. PubMed ID: 20419260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-reporter SERS-based biomolecular assay with reduced false-positive signals.
    Chuong TT; Pallaoro A; Chaves CA; Li Z; Lee J; Eisenstein M; Stucky GD; Moskovits M; Soh HT
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9056-9061. PubMed ID: 28784766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-Free Detection of C-T Mutations by Surface-Enhanced Raman Spectroscopy Using Thiosulfate-Modified Nanoparticles.
    Zeng J; Dong M; Zhu B; Gao X; Chen D; Li Y
    Anal Chem; 2021 Feb; 93(4):1951-1956. PubMed ID: 33464044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nanoaggregate-on-mirror platform for molecular and biomolecular detection by surface-enhanced Raman spectroscopy.
    Wallace GQ; Tabatabaei M; Zuin MS; Workentin MS; Lagugné-Labarthet F
    Anal Bioanal Chem; 2016 Jan; 408(2):609-18. PubMed ID: 26521177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanodome SERS platform for label-free detection of protease activity.
    Wuytens PC; Demol H; Turk N; Gevaert K; Skirtach AG; Lamkanfi M; Baets R
    Faraday Discuss; 2017 Dec; 205():345-361. PubMed ID: 28920115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.
    Mao M; Zhou B; Tang X; Chen C; Ge M; Li P; Huang X; Yang L; Liu J
    Chemistry; 2018 Mar; 24(16):4094-4102. PubMed ID: 29327504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration.
    Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A
    Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.