These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36780698)

  • 1. Reverberant magnetic resonance elastographic imaging using a single mechanical driver.
    Kabir IE; Caban-Rivera DA; Ormachea J; Parker KJ; Johnson CL; Doyley MM
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36780698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials.
    Doyley MM; Perreard I; Patterson AJ; Weaver JB; Paulsen KM
    Med Phys; 2010 Aug; 37(8):3970-9. PubMed ID: 20879559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing the radial and circumferential strain distribution within vessel phantoms using synthetic-aperture ultrasound elastography.
    Korukonda S; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1639-53. PubMed ID: 22899112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive carotid artery elastography using multielement synthetic aperture imaging: Phantom and in vivo evaluation.
    Nayak R; Schifitto G; Doyley MM
    Med Phys; 2017 Aug; 44(8):4068-4082. PubMed ID: 28494102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo wideband multifrequency MR elastography of the human brain and liver.
    Dittmann F; Hirsch S; Tzschätzsch H; Guo J; Braun J; Sack I
    Magn Reson Med; 2016 Oct; 76(4):1116-26. PubMed ID: 26485494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative evaluation of strain-based and model-based modulus elastography.
    Doyley MM; Srinivasan S; Pendergrass SA; Wu Z; Ophir J
    Ultrasound Med Biol; 2005 Jun; 31(6):787-802. PubMed ID: 15936495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performances and Limitations of Several Ultrasound-Based Elastography Techniques: A Phantom Study.
    Franchi-Abella S; Elie C; Correas JM
    Ultrasound Med Biol; 2017 Oct; 43(10):2402-2415. PubMed ID: 28760576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear Induced Non-Linear Elasticity Imaging: Elastography for Compound Deformations.
    Goswami S; Ahmed R; Khan S; Doyley MM; McAleavey SA
    IEEE Trans Med Imaging; 2020 Nov; 39(11):3559-3570. PubMed ID: 32746104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of ultrasound elastography, magnetic resonance elastography and finite element model to quantify nonlinear shear modulus.
    Pagé G; Bied M; Garteiser P; Van Beers B; Etaix N; Fraschini C; Bel-Brunon A; Gennisson JL
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37703895
    [No Abstract]   [Full Text] [Related]  

  • 10. Plantar Soft Tissue Characterization Using Reverberant Shear Wave Elastography: A Proof-of-Concept Study.
    Romero SE; Naemi R; Flores G; Allan D; Ormachea J; Gutierrez E; Casado FL; Castaneda B
    Ultrasound Med Biol; 2022 Jan; 48(1):35-46. PubMed ID: 34702642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.
    Okamoto RJ; Clayton EH; Bayly PV
    Phys Med Biol; 2011 Oct; 56(19):6379-400. PubMed ID: 21908903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncontact elasticity measurement of hydrogels in a culture dish using reverberant optical coherence elastography.
    Xu H; Yang F; Liang T; Luo ZP
    J Biomech; 2024 May; 169():112154. PubMed ID: 38768541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies.
    Ormachea J; Castaneda B; Parker KJ
    Ultrasound Med Biol; 2018 May; 44(5):963-977. PubMed ID: 29477745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An initial study of complete 2D shear wave dispersion images using a reverberant shear wave field.
    Ormachea J; Parker KJ; Barr RG
    Phys Med Biol; 2019 Jul; 64(14):145009. PubMed ID: 31170705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the impact of spatial priors on the performance of model-based IVUS elastography.
    Richards MS; Doyley MM
    Phys Med Biol; 2011 Nov; 56(22):7223-46. PubMed ID: 22037648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative comparison of modulus images obtained using nanoindentation with strain elastograms.
    Srinivasan S; Krouskop T; Ophir J
    Ultrasound Med Biol; 2004 Jul; 30(7):899-918. PubMed ID: 15313323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear strain imaging using shear deformations.
    Rao M; Varghese T; Madsen EL
    Med Phys; 2008 Feb; 35(2):412-23. PubMed ID: 18383661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative magnetic resonance elastography for polymer-gel dosimetry phantoms.
    Vieira SL; de Oliveira LN; Carneiro AAO
    Med Eng Phys; 2019 Apr; 66():102-106. PubMed ID: 30846236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous Multifrequency Direct Inversion (HMDI) for magnetic resonance elastography with application to a clinical brain exam.
    Barnhill E; Davies PJ; Ariyurek C; Fehlner A; Braun J; Sack I
    Med Image Anal; 2018 May; 46():180-188. PubMed ID: 29574398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance elastography of the brain.
    Kruse SA; Rose GH; Glaser KJ; Manduca A; Felmlee JP; Jack CR; Ehman RL
    Neuroimage; 2008 Jan; 39(1):231-7. PubMed ID: 17913514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.